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Kurzfassung 

Die vorliegende Arbeit untersucht die Anwendung adaptiver agenten-basierter Ansätze in 

Hydrologie und Wasserwirtschaft. Im Informationszeitalter werden neuartige Ansätze benötigt, 

um aus der Menge an verfügbaren Daten neue Informationen zu gewinnen. Dies spielt 

vorrangig beim Umgang mit großen Datenmenge eine Rolle, die häufig mit dem Begriff der Big 

Data in Verbindung gebracht werden. Dabei wurden in der Vergangenheit verschiedene 

Ansätze entwickelt, die jedoch diametral unterschiedlich zu betrachten sind. Auf der einen 

Seite stehen die reinen datengestützten Auswertungsansätze, zu denen u.a. stochastische 

Anwendungen und maschinelles Lernen gehören, auf der anderen Seite stehen 

wissensbasierte Prozessmodelle, wie physikalische Prozessmodelle oder die auf Regeln 

aufbauende Agenten-basierte Modellierung. An der Schnittmenge finden sich konzeptionelle 

Modelle, die beide Seiten in Ansätzen vereinen, ohne jedoch von den jeweiligen Stärken zu 

profitieren. 

In dieser Arbeit werden anhand von Beispielen aus der Hydrologie und Wasserwirtschaft 

exemplarisch die Ansätze des maschinellen Lernens sowie der Agenten-basierten 

Modellierung als Vertreter beider Analyseansätze behandelt und in einem konzeptionellen 

Ansatz vereint. Dabei zeigen sich besonders die Vorteile des maschinellen Lernens bei der 

Anwendung auf große Datensätze zur Ereignisseparation von Abflussdaten. Des Weiteren 

helfen informations-gestützte Ansätze die Vorhersagekraft von Daten zu beurteilen und 

können somit bei der Interpolation von schwer zu ermittelnden Messwerten dienen, wie das 

Beispiel der Vorhersage von Tracer Messungen aus Abflussdaten zeigt. Zudem erlauben die 

informationsbasierten Gütekriterien eine objektive Interpretation der interpolierten Daten, die 

im weiteren Verlauf zur Modellierung Karst-hydrologischer Systeme genutzt werden können. 

Da die Auswahl eines lernenden Algorithmus nicht eindeutig vorab bestimmbar ist, wird für 

jedes Fallbeispiel, frei nach dem Free-Lunch-Theorem, eine Auswahl an Ansätzen 

angewendet und getestet. Somit kann festgestellt werden, dass für die Ereignisseparation 

Support Vector Machines und Extreme Learning Machines die sinnvollsten Anwendungen 

sind, um zu guten Ergebnissen zu kommen. Neuronale Netzwerke hingegen sind nicht für die 

Ereignisseparation einzusetzen, zeigen aber gute Ergebnisse im Bereich der Vorhersage von 

Tracer Konzentrationen aus Abflussdaten. 

Im Gegensatz zu den daten-gestützten Methoden des maschinellen Lernens steht die 

Agenten-basierte Modellierung für die regelbasierte Modellierung. Hierbei stehen autonome 

Softwareprogramme im Fokus, die anhand eines definierten Regelwerkes Entscheidungen 

treffen und sich untereinander abstimmen müssen. Zudem befinden sich die autonomen 

Einheiten im Austausch mit ihrer Umwelt, wodurch sich ein komplexes Zusammenspiel 

zwischen den Modellkomponenten ergibt. Das Regelwerk, nach denen sich die Agenten 

verhalten und ihre Aktionen koordinieren, muss vorab definiert werden. Somit ist die 

Modelltechnik interessant für Anwendungsfälle, in denen grundlegende Prinzipien verstanden, 

aber noch nicht in jedem Detail durchdrungen wurden. Der Einsatz Agenten-basierter Modelle 

in Hydrologie und Wasserwirtschaft beschränkte sich in der Vergangenheit oft auf sozio-

hydrologische Modelle, in denen die Agenten einzelne Akteure im wasserwirtschaftlichen 

System darstellen. In dieser Arbeit wird gezeigt, dass ein Agenten-basiertes Modell ein 

sinnvoller Ansatz ist, um komplexe, physische Systeme räumlich und zeitlich differenziert zu 

betrachten. Hierzu wurde ein Modellframework geschaffen, das die Bewegung von Wasser 

durch die Bodenzone darstellt. Die autonomen Agenten zeigten dabei beobachtbare 

Verhaltensmuster von Wasser auf, die ansonsten nicht in Modellen abbildbar sind, wie die 

Altersstruktur des fließenden Wassers sowie Austausch- und Kontaktzeiten zwischen 

unterschiedlichen Wasseragenten. Neben der Agenten-basierten Modellierung ist auch die 

Agenten-basierte Klassifikation eine sinnvolle Bereicherung des Methodensets zur 

Aufarbeitung und Analyse hydrologischer oder hydrologisch relevanter Daten unter 



Berücksichtigung von Expertenwissen. Anhand eines räumlichen Beispiels aus Nebraska, 

USA wird die Tauglichkeit agenten-basierter Klassifikation zur Identifikation von bewässerter 

Landwirtschaft aus spektralen Fernerkundungsdaten aufgezeigt. Die komparative Studie 

enthüllte, dass die agenten-basierte Klassifikation vollständigere Klassifikationsergebnisse 

produziert als pixel-basierte Gegenstücke. Im Vergleich zur objekt-basierten Klassifikation 

entfällt zudem eine genauere Parametrisierung des Segmentationsalgorithmus, da die 

Parametrisierung der Agenten-basierten Klassifikation lediglich eine Voruntersuchung 

darstellt. Trotz aller Vorzüge bringt die Agenten-basierte Klassifikation weitere Nachteile mit 

sich, die sich besonders im Bereich der Regelwerke manifestieren. Pixel-basierte Ansätze 

zeigen eine weniger stark ausgeprägte Abhängigkeit vom definierten Regelwerk sowie der 

Qualität der Eingangsdaten, da Fehler in diesem Ansatz auf den fehlerhaften Bereich eines 

oder weniger Pixel beschränkt sind. 

Abschließend werden beide Auswertungsansätze im Bereich der adaptiven Agenten-basierten 

Modellierung zusammengeführt. Hierbei handelt es sich um einen Ansatz, der die Vorzüge 

des maschinellen Lernens mit den Vorteilen der Agenten-basierten Modellierung kombiniert. 

Hierbei werden Schwellenwerte, die die Aktionen der Agenten auslösen, mittels maschinellem 

Lernen an die vorherrschende Situation angepasst.  

Insgesamt zeigt diese Arbeit anhand einer Vielzahl an unterschiedlichen Fallbeispielen aus 

Hydrologie und Wasserwirtschaft mögliche Anwendungsfelder neuartiger Modellierungs- und 

Analysetechniken. Neben den Verbesserungen wird ein Fokus auf Hindernisse und Fallstricke 

im Bereich Big Data und Maschinellem Lernen gelegt. Durch die freien Strukturen neigen die 

Modelle und Algorithmen zur Überanpassung und zu einer mangelnden Übertragbarkeit der 

Ergebnisse. Somit wird, falls möglich, jede Fallstudie im Vergleich zu anerkannten Methoden 

komparativ aufgebaut, um die Verbesserungen durch die neuartigen Analysemethoden zu 

quantifizieren und qualitativ zu beschreiben. Des Weiteren wird für jedes Fallbeispiel eine 

Strategie zur Übertragung der erlangten Ergebnisse auf andere Gebiete und Probleme 

präsentiert. Die Hydrologie kann mittels der hier vorgestellten Methoden neuartige 

Erkenntnisse aus existierenden Daten gewinnen. Zudem wird der Einbezug von 

Expertenwissen in daten-gestützte Anwendungen vereinfacht und formalisiert. 

 



Abstract 

This thesis introduces the application of machine learning enhanced adaptive agent-based 

techniques in hydrology and water resource management. In the age of increased data 

availability the deduction of information from the data is the major task for any data scientist. 

Therefore, novel approaches were developed to extract information either through da-ta-driven 

approaches like machine learning or the alternative direction, knowledge-based systems. One 

of the most recent knowledge-driven approaches is the so-called agent-based modelling where 

autonomous programs decide on their actions based on a predefined rule set. Conceptual 

models, like the common HBV model (Lindström et al., 1997), are located at the intersection 

of both modelling worlds without incorporating the advantages of either approaches. This 

thesis proposes a preliminary solution which profits from both approaches in a water resource 

management model. 

Current hydrological models rarely make use of the increased data availability because the 

applied core concepts originate from times where computational power was limited or non-

existed. Moreover, the ingestion of data from different sources remains difficult. In order to 

answer our more complex research questions with a focus on linkages between processes in 

the environment and society, novel more dynamic approaches are required. Using case 

studies from hydrology and water resource management, both modelling approaches are 

explained and introduced. Machine learning shows its merits in combination with big data 

archives. Therefore, its applicability on flood event separation from large datasets of runoff 

was tested. Here, Support Vector Machines and Extreme Learning Machines showed the 

highest performance. Thus, information-theory based criteria of performance could be applied 

to judge the information content of data and the quality of interpolation results from machine 

learning. Tracer measurements were taken from several different karst springs in France to 

predict tracer concentrations from discharge. In contrast to the flood event separation in 

Bavarian catchments, the tracer prediction of French karst springs did not show any preference 

towards any algorithm but the information content of the available data sets was quantified by 

the information-theory based criteria.  

Contrary to data-driven machine learning approaches, knowledge-driven techniques like 

agent-based computing require a general understanding of the modelled pattern. Formerly, 

this approach was limited in application to decision making problems in social sciences and 

behavioral biology. The ability of agent-based models to capture physical systems in hy-

drology was shown by the creation of a modelling framework to describe the movement of 

water through the soil via water agents. In contrast to social systems, the general rule sets are 

well known and yet does the chaotic nature of the agent-based modelling approach reveal 

insights into system internals that would have remain hidden else? The chaotic nature in the 

agent-based model originates from the outcome of these models: Due to a high number of 

individual objects, the final outcome is more than the sum of individual decisions but the result 

from the interplay between the autonomous entities setting up the mod-el. In comparison to a 

classical numerical storage model, an agent-based model delivered comparable results. 

Moreover, this case study indicates behavior of water that could not be modelled by numerical 

model approaches like the interaction of spatially explicit water particles and the age structure 

of water in a soil column. 

Not only were the modelling capabilities of agent-based computing tested, but also the 

classification capabilities of the approach. Therefore, an agent-based classification scheme 

was set up for the delineation of irrigated agriculture in Nebraska, USA, from spectral re-mote 

sensing data. Here, it could be shown that the agent-based classification delivers a more 

complete set of classified structures than its pixel contravenes. Additionally, it de-creases the 

influence of segmentation parameters in the object-based image classification. Nevertheless, 



the agent-based classification still imposes several problems that are linked with the rule set 

that defines the interactions. 

As a keystone bridging both worlds of modelling, the adaptive agent-based modelling is finally 

introduced. Therefore, a simplified irrigation model was set up based upon the historic Balinese 

water temple scheme. In contrast to a non-learning agent-based model, an adaptive agent-

based model incorporating a machine learning approach was able to improve yields in a 

changing environment thus showing potential for self-improving models.  

Overall, this thesis reveals benefits and disadvantages of unique data analysis approaches 

through various case studies from hydrology and water resource management. Next to 

improvements and information gain from existing big data archives, like the enhanced flood 

event separation by machine learning, limits and hurdles are discussed. Here, overfitting and 

a lack of transferability are the major sources of problems. If possible, for any case study a 

comparative analysis is shown where the novel approach is compared to an established 

approach to judge any improvement.  

The methods presented in this thesis, help to extract novel information from existing data. 

Moreover, the incorporation of expert knowledge in data-driven approaches is simplified and 

formalized. 



Preface 

Artificial Intelligence (AI) is the core element in many new developments in science and 

technology. It is impressive how high the expectations in cognitive functions of computers are. 

The discussions, e.g. in the field of autonomous driving, show that the way from analytical AI 

to humanized AI, which would require cognitive, emotional, and social intelligence, will be long 

and difficult. But also the application of analytical AI is a challenge for hydrology and water 

management as it demands a cognitive representation of problems and is based on learning 

from data and experience to inform decisions. Machine learning, based on data analyses 

and/or experiments, is one very important component of most AI applications. A way to 

integrate this derived knowledge into models (and finally into decision making processes) are 

agent-based models, where components (“agents”) simulate simultaneous operations and are 

able to interact with multiple other agents to simulate and predict the appearance of complex 

phenomena.  

Benjamin Mewes thesis is focused on the application of such adaptive agent-based 

approaches in hydrology and water management. In his scientific work, the adaptation of 

systems is based on methods of machine learning, which are analyzing large data sets to 

derive rules and defining the functions of the agents. One substantial component in his 

research work is the comparison of different algorithms of machine learning with respect to 

their requirements to get input information and their ability to provide new information for the 

derivation of rules. In agent-based models, the interaction of model components is controlled 

by encapsulated, autonomous software units, whereby each of these agents has a strategy to 

achieve pursuing a specific goal.  

This requires a problem-orientated machine learning system, which is applying the right 

method for the current problem and (more complicated) for the information requirements of 

specific types of agents. Since the agents interact with each other, the various steps to reach 

the overall goal have to be defined in advance and the behavior of each agent has to be 

adapted according to the current situation and the predefined knowledge by rules which was 

derived from the machine learning. In this way, the interplay of data mining and agent-based 

modeling became the methodological focus of this thesis. The complexity of the research work 

results from three components:  

 

- the variety of hydrological and water management problems, determining the required 

information,  

- the selection of appropriated machine learning tools to provide such information from 

data and  

- the integration of this information into agent-based models.  

 

In this way, Benjamin Mewes demonstrated with this thesis a high level of methodological 

competence in hydrology and water management but also in modern IT. With three meaningful 

applications he demonstrated the potential of adaptive agent-based modeling in conjunction 

with machine learning approaches. This required a deep understanding of the hydrological and 

water management components to develop the appropriated knowledge base for the agent-

based models which represent these components. In this sense, the thesis is an 

interdisciplinary approach which deserves special appreciation. I hope that many other 

scientists will benefit from the experience published by Benjamin Mewes here and in several 

other publications, even if this would shorten the duration of novelty of his results. However, 

this is the fate of many very modern approaches in a dynamic field of research.  

Prof. Dr. Andreas Schumann 
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1 Introduction 

In times of availability of big data archives and powerful computational technology, a variety 

of modelling techniques become more and more important. To find information in these data 

sets, data mining methods are common tools to investigate internal structures of the data sets 

to preprocess the data before the actual modelling takes place. The effort research has to 

invest on investigating and preprocessing the data is relative to the amount of available data. 

So, in the recent years Machine Learning (ML) has become a powerful tool in terms of data 

science (Kelleher et al., 2015). ML algorithms try to identify patterns in the data and then 

replicate the learned pattern to an unknown data set. ML fits well to predict missing data and 

to classify data sets where the relations within the data are not fully known and can thus not 

be defined a-priori. Often, the nature of hydrological systems is not fully known. Conse-

quently, the rules leading to a desired result can’t be described and data driven methods like 

ML are suitable tools to investigate the data set. Consequently, ML could fill the gap and 

lead to better results than classical approaches, e.g. to separate single flood events from con-

tinuous time series of runoff (Fig. 1). Known filters (Chapman, 1999) or recession-based 

approaches require local customizations and are rarely transferable  (Mei and Anagnostou, 

2015). ML-based approaches on the other hand could be used to detect patterns in runoff to 

separate flood events without the need for manual corrections and customizations. Baseflow 

recession helps to find the end of a runoff event, but it does not help to identify the beginning 

of the event. Thus, either an extension of the baseflow recession approach has to be formu-

lated, or a different methodology to separate the flood event from the time series of runoff 

has to be found. 

As the information content of data is of relevance in any data-driven ML approach, a deeper 

analysis of the underlying data has to be conducted before setting up ML schemes. An in-

vestigation of the information content sheds light on the hidden structure of the information 

in the data but it requires knowledge on the true reference data. Therefore, a different appli-

cation has to be found than flood event separation, because a true reference data of trustwor-

thy flood events is not available. Information rich applications, like the tracer analysis for 

the analysis of flood composition and the related catchment analysis (Garvelmann et al., 

2017), on the other hand offer true reference data in terms of measurable tracer concentra-

tions. Often, in tracer-based hydrology, the available time series of tracer measurements are 

too short to work with. So, the idea evolved to predict the hard to measure variable (the tracer 

concentration) with an easy to measure variable (the runoff) as it is shown in Fig. 1. The 

information content analysis is applied to judge the ML prediction of the tracer concentra-

tions.  
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Because of the unknown internal structure of the data and the relations within the data ML-

based approaches are known as bottom-up techniques. The bottom of the model, the data 

defines the starting point to understand and replicate the system. In the hydrological com-

munity this approach of modelling is often accused of a black-box behavior with a lack of 

interpretability in real world applications (Shen et al., 2018). The opposite of bottom-up 

approaches are top-down modelling techniques. Under this umbrella term rule-based tech-

niques, like Agent-based computation are collected. Here, the rules of the interaction be-

tween the model components have to be defined beforehand. These rule-dependant ap-

proaches are suitable to investigate assumptions on the interplay of model components and 

resulting patterns. Hydrologically, these top-down modelling techniques fit well with highly 

dynamic situations like the flow of water through a porous soil matrix. From a bottom-up 

perspective, the emergent behavior could also be modelled with deep learning approaches 

(Shen, 2018). This approach was discarded because the interpretability of the internal states 

of a deep learning network is often complex or even impossible, so this phenomenon was 

modelled with a rule-based agent-based model. Although the general physical rules are 

known, the definitions of rule sets within hydrological models often remain incomplete and 

thus traditional models do not lead to observed behavior of water in the vadose zone. Fur-

thermore, model conceptions like HBV (Lindström et al., 1997) or cmf (Kraft et al., 2011) 

don’t allow the analysis of certain aspects of the water like the age distribution or exchange 

of solutes in the soil. Therefore, an Agent-based model (ABM) is setup to describe the be-

havior of water in the soil and to model the reaction of a soil column to an infiltration input. 

The water is represented through autonomous software agents that interact with their envi-

ronment according to a defined rule set. With this approach, the age distribution of water 

remains intact and interpretable in the here presented Agent-based model for the transport 

of water through the porous soil matrix which is a major advantage against numerical soil 

water models like Hydrus 1D (Simunek et al., 2005). Next to modelling, Agent-based meth-

ods can be used to classify data by incorporating the aforementioned advantages of the fully 

connected top-down Agent-based approach (Blaschke et al., 2013; Hofmann et al., 2015). 

Here, irrigated agriculture is identified in Nebraska, USA, from spectral input data with 

Agent-based classification techniques (ABC) (Fig. 1). In contrast to traditional pixel-based 

remote sensing image interpretation techniques, the Agent-based classification considers 

similar pixels as objects that are able to alter and to interact. Thus, the topography of the 

objects and the temporal development of the objects remains intact. Hence, spatial patterns 

can be investigated by a more complete classification result that takes advantage of the ex-

tended classification abilities of software agents which know about their environment and 
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their neighbors. 

 

Fig. 1: Methodical evolution of an adaptive Agent-based model for water resource management 

combining the advantages of rule-based Agent-based computing and data-driven Machine 

Learning as a flow chart in this thesis. 

To overcome limitations of both approaches (abstract results, uninterpretable internal states 

of ML and limits of rule sets in ABM), a combination of both worlds is a promising model-

ling technique: the adaptive Agent-based model. Here, ML is used to adapt thresholds in 

behavioral rules in Agent-based models. This leads to a highly adaptive modelling approach 

which alters the interplay of model components dynamically at runtime. Through this ap-

proach, water resource management problems and the social development of strategies to 

adapt to changing environmental conditions can be modelled like the evolution of water 

distribution strategies. In this thesis, the example of medieval Bali with its antique water-

focused temple religion is taken (Lansing, 2007). This religion, or cult, was created to regu-

late the distribution of water among the farmers and state the societal rules and mindset how 

to treat topics like inequalities in water distribution, cropping schemes and pest-control. The 

model reveals the benefits of a water-based religion that was developed to distribute water 

in rice farming communities. The interactions between the farmers and a coordinating are 

modelled to maximize the yield and to minimize to impact of pests that could harm the rice 

harvest. ML is applied to investigate the current hydrological situation and adapt the system-

atic behavior of the community towards drought, flooding and a destruction of harvest by 

pest. Traditional models cannot be adapted at runtime and are thus not able to model social 

adaption to rapid environmental changes. It can be shown that the adaptive ML-enhanced 

Agent-based model of the Bali irrigation system delivers higher yields and thus outperforms 
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the non ML-enhanced model. Consequently, the extension of the Agent-based modelling 

technique by ML methods represents a fundamental improvement for the application of 

Agent-based methods in the modelling of socio-hydrology and water resource management. 

1.1 Overview and brief explanation of techniques applied in this study 

The approaches presented here origin from information technology and its related sciences. 

Therefore, a general introduction with a definition is given before the actual case studies are 

presented. In the following section main terms are explained and definitions given. For a 

better readability some terms will later be abbreviated. Nevertheless, all used abbreviations 

are collected in the ‘Abbreviations and Symbols’ section of the thesis. 

1.1.1 Big Data 

The term “Big Data” is one of the major keywords in many data driven studies in the recent 

years (Mauro et al., 2016). Nevertheless, the definition of big data is vague and not obvious 

(Mohammed et al., 2016). The following selection of V-words is widely used to describe big 

data sets: Velocity (of transmission), Volume (of data), Value (information derived from the 

big data set), and Veracity (the trust towards the data set) (Mauro et al., 2016). Big data and 

the linked analysis of these archives is part of the data-information-wisdom hierarchy that 

states that information, not the data per se, is the core fundament of any big data analysis 

(Rowley, 2007; Mauro et al., 2016). The technological aspect of big data archives is crucial 

because the sheer amount of data has to be stored, analyzed and in case delivered to the user. 

Following Moore’s law, the capacity of computing resources doubles every 18 to 24 months, 

but so does the amount of data (Hilbert and López, 2011). So, big data mirrors the race 

between the amount of available data and suitable approaches to extract data from the ar-

chives and leaves gaining new information from existing data as the major advantage of big 

data (Chaney et al., 2018). Thus, big data archives and novel analysis approaches, based on 

information gathered from these archives, are of great interest for any research community. 

1.1.2 Machine Learning 

Machine Learning is the hypernym for computer programs that extract patterns from data 

sets. Hereby, the patterns are not defined by the researcher, but characteristics of the patterns 

are identified by the machine and then transferred to a new problem. To find these patterns 

a ML algorithm has to be defined which adapts to a given set of training data. This represents 

the learning character of ML: Expertise from available data is taken to fit a black-box algo-

rithm and then transferred to new data. ML has seen a variety of applications in hydrology, 

from rainfall-runoff-modelling (Solomatine and Dulal, 2003; Chen and Adams, 2006; Yu et 

al., 2017), estimations of soil moisture (Coopersmith et al., 2014), tracer concentration mod-

elling in small rivers (Piotrowski et al., 2007), forecasting streamflow (Talei et al., 2010; He 

et al., 2014), evapotranspiration estimation (Tabari et al., 2012) and many more (Raghaven-

dra and Deka, 2014).  
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ML can be divided into three branches: supervised learning, un-supervised learning and re-

inforcement learning (Kelleher et al., 2015). Supervised learning requires the definition of 

training data. The training data must contain the minimum amount of data to capture all 

relevant structures within the data without under- or overrepresentation of a target (Han and 

Kamber, 2010). The target of the ML approach can either be a class (after a classification) 

or a continuous variable (after a regression). Contrary, unsupervised learning does not re-

quire training data but an idea of what kind of information is required from the data. Apply-

ing an unsupervised learning algorithm for a classification requires a number of individual 

differentiable entities, like classes, or a measure of distance or similarity. Reinforcement 

learning consists of a reward-punishment system while training. This means that after each 

model run the chosen strategy is checked as to whether it leads to better or worse results. 

Variations leading to better results are repeated more often in this learning process than those 

variations leading to a worse performance (Goodfellow et al., 2016; Shen et al., 2018). This 

approach is mostly used for maximization and minimization processes without a known 

global optimum. The forward-backward modelling type is often referred as deep learning 

where the structure of the model is rather implicit than explicit.  

1.1.3 Agent-based Modelling 

A rather novel approach in modelling is agent-based modelling, originating from social sci-

ences and biology. Here, encapsulated software units build the modelled system and act un-

der certain constraints and boundary conditions autonomously (Macal and North, 2010; 

North, 2014). Agent-based models require a defined rule set for each agent as well as global 

boundary conditions. This modelling technique allows the investigation of the interplay of 

model components, and the resulting patterns and is perfectly suited for modelling problems 

at the interface between human activities and natural systems (Gunkel, 2005). For example, 

agent-based modelling is part of a planning tool which cities like Cologne use for their flood 

evacuation system developed by topoCare GmbH. Here, the agents are limited to human 

workers that help to construct mobile dams and distribute goods among the workers.  

All of the mentioned approaches are presented in detail in the related subsections of this 

thesis. For each subsection a hydrological problem and the specific application was set up. 

The overall aim of the thesis is to show the marriage between both columns of the work: the 

data-driven black-box approaches of ML and the white-box approaches with the clearly de-

fined rule sets in ABM. Therefore, the general applicability of both columns is shown first 

and in the last part of the work a combined model is presented. 

1.2 Main problem 

Hydrological research requires data and adequate modelling techniques to find solutions to 

real world problems. Google’s Earth Engine stores more than a peta-byte of environmental 

data in a virtual data warehouse: the cloud (Gorelick et al., 2017). The database includes data 

from the last 40 years with new data coming every day. In this time span of its existence, a 

large volume of spatio- and temporal-explicit data was collected in the Google Earth Engine. 
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Alphabet does not manage and collates this enormous amount of data alone, the European 

Environmental Agency ESA, the US-American National Aeronautics and Space Administra-

tion NASA, the US geological survey USGS and many more also provide environmental 

data at a high spatio- and temporal resolution. To analyze this data and to gain new insights 

is a major task for data science in environmental sciences. Nevertheless, the advantages of 

big data archives is on the downside, limited by the processing capability of the researchers. 

Especially in areas where not all significant rules of interplay are known, e.g. for flow in the 

vadose zone and the interaction of water with the soil matrix or the separation of flood events 

from continuous time series of runoff, it would be a massive improvement to let the machine 

search for patterns in data which was the major motivation to investigate the possibilities of 

ML (Samuel, 1959). Moreover, coupled models with combinations of different systems, like 

human societies and natural systems could reveal further information on future development 

like climate change or alterations in vulnerable ecosystems.  

Generally, the evolution of information theory, ML and big data are driving forces for the 

evolution in industry and science. All terms are synonyms for the democratization of 

knowledge: Computational power became cheap and accessible so that knowledge from data 

is not a privilege of few but in the hands of many. Thus great economic and scientific interest 

is in the application of these approaches. The German gross domestic product could be in-

creased by 11.3% until the year 2030 solely by artificial intelligence and big data in all 

branches (Kirschniak, 2018). Companies like Alphabet and Facebook are dedicated to gen-

erate money from data and the analysis of private data for advertisement. Also in environ-

mental science data is a driving factor. In 1998 the European Union passed the regulation 

act EC 1376/2006 to share environmental data for the application in decision making in en-

vironmental matters (EEA 2018). By 2018, most of the European member states shared their 

data via the open portal of the European Environmental Agency. The USA and Canada share 

their data on national databases that are also free to access for any interested user. Long-term 

state-owned satellite-observation programs like Landsat, Sentinel-2 or SPOT are free to ac-

cess and store billions of gigabyte of spatial and temporal data. Recently, European admin-

istrations started to share their environmental data, like measured runoff at gauges with the 

EEA data base and national databases. To access these massive amounts of data, novel ap-

proaches in data mining, modelling and hypothesis building are required that overcome bur-

dens and limits of established approaches. Whether these approaches are data- or knowledge-

driven is not obvious and depends on the available data, the quality of the data and the nature 

of the question to the data. This means, that the choice of method depends highly on the 

desired information to get from the data to find a solution for the given problem. 

In the hydrological community the availability and the democratization of data led to many 

studies investigating the application of data-driven approaches in data mining, modelling 

and decision making (Chaney et al., 2018). As progress on the computer science front was 

made, the different approaches took their time to diffuse into hydrology. The complementary 

avenue (Shen et al., 2018) introduced the path hydrological modelling has to take, if system 

understanding moves its focus from top-down to bottom-up, trying to understand a hydro-
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logical system by the structures within the data. Furthermore, the data-driven bottom-up ap-

proach shows a lower bias in choosing model components than the traditional way of model 

development where a defined structure is fitted to the data. 

“With data, opportunities arise” (Shen et al., 2018) – but challenges as well 

The availability of large data sets created new opportunities to model complex environmen-

tal situations. The interpretation of ML results is often not trivial, and only rarely transferable 

to similar yet different problems. Moreover, the information content of data moves into the 

spotlight of research (Solomatine and Ostfeld, 2008). Consequently, the information content 

is of higher importance than the pure quantity of data. Because novel data mining and mod-

elling approaches are data-driven, noisy or information-poor data negatively influence the 

performance. The information content limits of the explanatory power of data, which then 

influences the choice of approach for further investigation as well as reliability of the gen-

erated information from the analysis. The No-Free-Lunch-Theorem states that there is no 

one-solution-fits-all approach but that an algorithm that fits well with a certain problem will 

also be able to solve a similar problem with a degraded performance (Wolpert and Macready, 

1997). Following the No-Free-Lunch-Theorem, a detailed analysis of structurally different 

approaches has to be considered before a setup can be chosen prior to the actual analysis 

process (Ho and Pepyne, 2002; Wolpert and Macready, 1997). To find the approach that 

degrades the performance less and requires less work for the implementation, is the major 

task in data-driven science or data science (Han and Kamber, 2010). The process to choose 

a suitable setup requires the abstraction of a complex problem to fit a variable model struc-

ture. The influence of the expert is controversial in the scientific discussion: While some 

authors clearly state that data-driven approaches support the scientist (Solomatine and Ost-

feld, 2008), others claim that any influence of the expert in the data-driven process is some 

level of bias (Shen et al., 2018). So, one has to find a balance between these two poles: The 

expert is of importance as long as the structure of the data-driven approach is hidden. 

Knowledge-based approaches are per-se biased by the researcher, because of the a-priori 

formulated rule sets.  

Two major branches of modelling approaches exist, black-box and white-box methods (Fig. 

2). While the prior tries to link in- to output without adding knowledge to the system func-

tion, the latter puts the description of the system by rules and constraints in the foreground. 

White-box modelling represents the knowledge-driven modelling approach. Black-box 

modelling is a metaphorical understanding of data-driven approaches. The data is trans-

formed in a box to a known outcome, without strict limitations of the fitting within the box. 
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Fig. 2: The diametric dimensions of modelling approaches: black-box data-driven approaches 

and knowledge-driven white-box techniques. Evolutional, or adaptive modelling combines 

the advantages of both worlds in a novel approach that is unique in hydrology and water 

resource research. 

In hydrology and water resource management, the application of Machine Learning and big 

data has an extensive history. Nevertheless, the attitude towards results from data-driven 

approaches is reserved and often derogative (Shen et al., 2018; Solomatine and Ostfeld, 

2008). The black-box character of data-driven approaches a bone of contention in discus-

sions about the usability of the results, because of the limited interpretability of the internal 

structures in applied sciences like hydrology. Data-driven structures are hard to interpret and 

sometimes not reproducible when the input data changes. Hence, a detailed analysis of the 

resulting algorithm has to be given in addition to performance and accuracy measures. 

Deep learning (Goodfellow et al., 2016) tries to move Machine Learning from black-box to 

a more comprehensible data structure where the found structure of the model is in the spot-

light of any analysis. The inner core of the adapted model remains intact and only the outer 

layers are adapted to the specific problem. Because of the relative youth of this approach, 

deep learning is just about to find suitable applications in hydrology and water resource 

management (Shen, 2018). The alternation of the data mining process between white box 

and black box modelling at runtime could be aggregated to the term evolutional modelling 

(Fig. 2) and could be achieved by deep learning structures. Agent-based models (ABMs) on 

the other hand represent a variant of white-box-modelling with clearly stated rules (Macal 

and North, 2010). Nevertheless, ABMs allow the identification of unforeseeable interactions 

between model components and model outcome because of autonomous software units that 

try to fulfill their goal under the same environmental conditions and thus lead to dynamic 

results (Mewes and Schumann, 2018b). The strictly formulated rule sets are a major burden 

for ABMs. Additionally, ABMs are often criticized because of their limited generality, trans-

ferability and the limited application to real world data (Bruch and Atwell, 2015). Although, 

big data archives require dynamic data mining approaches like agent-based computation, 

usage is rare because the strict definition of rules hinders their application as well as the 
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computational demand to run these models. 

1.3 Aim of this work 

In this thesis the fundamentals of Machine Learning and agent-based modelling are pre-

sented to introduce adaptive agent-based modelling as an alternative analysis approach in 

hydrology and water resource management. By a series of consecutive case studies a com-

bined approach utilizing methods from both ends of the modelling sphere (Fig. 2) is devel-

oped: The adaptive agent-based modelling. By mixing both worlds, a highly dynamic mod-

elling and analyzing technique is created. Therefore, a variety of problems is discussed in 

order to show promises, opportunities as well as traps and burdens of these novel modelling 

approaches.  

This study covers the complementary avenue by Shen (2018) for an application of learning 

modelling approaches in hydrology and water resource research. The complementary avenue 

states that big data archives, powerful Machine Learning approaches and knowledge-driven 

interrogative approaches need to be combined to derive new information from the novel 

possibilities available in data science to profit from the development of those tools. Hence, 

application-related studies of the new tools are needed that cover the comparison and the 

combination of the aforementioned tools and approaches. The diametric dimensions of the 

two different modelling approaches are represented by the two outer columns of the arc (Fig. 

3). On the one side the possibilities introduced by Machine Learning are discussed while on 

the other side the virtues of agent-based modelling are presented. The differences of both 

worlds are bridged by the keystone of the combined approach, the so called adaptive Agent-

based modelling (aABM). Here, aABM combines the strengths of both columns. Neverthe-

less, the application of ML and ABM requires conceptual understanding of both modelling 

hemispheres. Hence, the thesis will be presented as the construction of an arc. Each side of 

the arc will be constructed individually with the keystone as the final bridging element be-

tween both sides. 

 

Fig. 3: Arc of data-driven and knowledge-driven modelling presented in this work, bridged 

by the keystone of the combined approach, the adaptive agent-based modelling. 

 

 



Introduction 

20 

 

For each of the techniques applied a short introduction and two hydrological case studies 

were conducted. It starts in the second chapter with fundamentals of ML and an application 

of a comparative ML framework to separate flood events from time series of discharge by 

the application of established machine-learning algorithms. It was shown that a comparative 

analysis of ML results allows a regionalization of trained machines which is the first step 

towards deep learning and adaptive dynamic models. To keep results comparable, each of 

the techniques was compared to the results from manual separation of events. This case study 

revealed that ML helps to ease the separation of rule sets. It depends on the training data 

which patterns are found in the data. Apart from a single approach nearly every ML algo-

rithm was able to detect these patterns in chunks of runoff data. 

In the third chapter of the thesis, information-theory based criteria were introduced to judge 

the information content of data. These criteria helped to choose the most suitable ML ap-

proach to predict natural tracer signatures from discharge in karstic environments. Moreover, 

the pre-analysis of the input and training data allows to judge interpolated time series without 

having data for comparison. Results show that it was more complex to predict tracer con-

centrations from runoff than separate runoff events. The complexity was expressed by the 

non-existing preference towards an algorithm but a dependency of region, data and tracers. 

Nevertheless, it can be shown that by a combined approach of different learning strategies 

the ML algorithms are able to predict tracer concentrations to a certain level.  

The forth chapter of the study is separated into two parts. Here, agent-based modelling is 

introduced in its fundamentals. A preliminary framework to model the flow of soil water is 

presented to underline the applicability of agent-based models for physical hydrological 

problems. The chapter reveals technique-specific problems like the dependency of perfor-

mance to a chosen scheduling method. In contrast to storage-based conceptual models, ABM 

consists of a multitude of autonomous objects with an explicit spatial setting. So, scheduling 

has an influence on which water is allowed to flow first. This problem was overcome in 

storage models by intelligent numerical approaches. Here, the simultaneity of processes re-

quires new ideas to schedule the behavior of the ABM. Overall, results are very promising 

in comparison to a known hydrological modelling framework. 

The fifth chapter aims to promote another new application of agent-based computation: 

Agent-based image analysis of remotely sensed images. For a well-investigated region, the 

state of Nebraska, USA, the capability of agent-based image classification was investigated. 

It could be shown that ABC was able to use fuzzy knowledge in the interpretation of un-

known scenes and remote sensing images that otherwise could not be used in the process of 

image interpretation. For the delineation of irrigated agriculture from spectral remote sensing 

data, the approach is a good fitting especially if the temporal resolution of the data is low. 

First results show that the approach is highly sensible to the quality of the input data but 

generally it is able to compete with traditional image classification approaches.  

The sixth chapter presents the synthesis of the previous chapters implementing a deep learn-

ing architecture with ABMs under the premises of big data, adaption dynamics and pattern 

recognition in structured data with less strict formulated rules of agent behavior. Therefore, 
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a simplified irrigation model from medieval Bali was implemented based on the findings of 

Lansing (2007). The simplified deep learning approach in a multi-layered ABM was used to 

adopt thresholds to changing environmental conditions.  

In the final conclusion and outlook future developments and planned research are described 

and briefly outlined. The here presented adaptive agent-based modelling is a promising new 

way to combine both modelling techniques and to profit from both approaches. aABM may 

overcome conceptual limits especially of the ABM. Meanwhile the strength of the ML ap-

proach is captured by the dynamic adoption to altering conditions. The introduced case stud-

ies are revisited and possible new applications are developed from the experience from the 

complementary approach.   
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2 Machine Learning applications in hydrology and water 

resource management 

 

Learning algorithms are the logical cause of the magnitude of available data. From its very 

beginning, ML was seen as a prospect to lower programming work in data-rich environments 

to gain information from the available data (Samuel, 1959). The term ML itself vanished 

because of the low availablity computational resources in the time of its first appearance in 

the 1950s - 1960s. With the dawn of powerful cloud computing environments, ML reap-

peared in the shadow of soft-computing approaches. Soft-computing (SC) is an umbrella 

term in information theory that covers computational approaches that analyze data with a 

low vulnerability towards imprecision and uncertainty to gain a robust, low-cost result (Za-

deh, 1996). It unifies keywords like machine-learning, fuzzy sets and probabilistic reasoning 

(Bonissone, 1997). The SC approaches are not per se competitive but rather form partner-

ships of distinct methods to solve the questions that the researcher posed (Zadeh, 1996). ML 

evolved in the past decade from the shadow of soft-computing and is now a field of research 

within the computational engineering and the statistical and mathematical faculties (See et 

al., 2007; Solomatine and Ostfeld, 2008). 

2.1 Fundamentals of Machine Learning 

Within the SC approaches Machine Learning (ML) has evolved as one of the most promising 

tools to retrieve information from large data sets in an automated manor (Goodfellow et al., 

2016; Kelleher et al., 2015; Han and Kamber, 2010). ML is basically “a […] program [or 

algorithm] that learns from experience E with respect to some task T and some performance 

measure P, if its performance on T as measured by P improves with experience E” (p.2 , 

Mitchell, 2010). So, ML algorithms adapt a variable structure to some known results in order 

to rebuild the general problem by the given data. ML algorithms either classify unknown 

targets, or solve a regression problem for the estimation of a continuous variable. ML ap-

proaches are more feasible approaches and often less cost-intensive than traditional model-

ling approaches (Domingos, 2012). Using data-driven approaches is of great importance if 

a) the data base is large enough to cover the relevant phenomena and b) it is hard to build 

purely knowledge-driven models (Solomatine and Ostfeld, 2008; Shen et al., 2018). To con-

duct the classification or to solve the regression problem, the chosen algorithm has to be 

fitted to the problem (Kelleher et al., 2015). Here, the correct question to the data has to be 
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found: What is the key information required from the data? Most relevant in the process of 

setting up a ML model is the generalization of the problem. It is highly unlikely that the 

exact pattern of the training data is repeated in the validation or testing data, so the focus has 

to lie on the characteristics of the pattern (Domingos, 2012). The characteristics have to be 

derived from the data and thus need to be objectified. Taking the separation of runoff events 

from a continuous time series of runoff as an example, possible characteristics identified by 

the ML could be the steepness of recession curves, the peak flow or many other combinations 

that may not be obvious from literature but remain hidden in the data until the ML approach 

discovers them. The question limits the obtainable results as well as the choice of algorithm 

and the minimal amount of data used for training.  

For the training of the algorithm, various strategies are available: unsupervised and super-

vised training. The combination of both strategies, the semi-supervised learning is not treated 

in this thesis. A rather novel addition to this choice is the reinforcement learning that repre-

sents a problem specific trial and error scheme with gratification and punishment (Goodfel-

low et al., 2016; Shen et al., 2018). While the supervised learning strategy requires a set of 

examples to train the algorithm to the problem, analyzes the unsupervised strategy and the 

existence of natural breaks in the data. Un-supervised classification approaches require a 

clearly stated idea of what should be found in the data. Due to the highly complex nature of 

hydrological problems, e.g. of flood types or irrigation strategies, the exact number of dis-

tinguishable groups within the data cannot be defined a-priori. Reinforcement learning ap-

proaches that make use of interrogative techniques to improve their system understanding 

require a lot of training data and scenarios. Moreover, the fitting of a deep learning model 

core is work intensive and should be avoided for simpler problems (Bengio, 2009). 

For most of the problems presented in this work, a supervised learning strategy was applied. 

This means that a trustable set of training data was required to fit the algorithms (presented 

in the following subsections). The increase of training data in combination with a random 

selection of samples from the training data simulated the growing data base and the unknown 

additional information content by the newly added sample. Kelleher et al. (2015) group the 

available ML approaches into four different families: information-based, similarity-based, 

probability-based and error-based learning. In this thesis, a focus was on two of these four 

families: information-based and error-based learning techniques. None of the probability-

based approaches were included due to the hardly objective choice of a suitable probability 

density function for continuous regression tasks in the specific field of flood event separa-

tion. Moreover, the subjectivity to specify a measure of similarity hindered us from using a 

similarity-learning approach for the problems in this study. In the following sections, the 

chosen set of ML approaches is presented. All presented approaches were implemented us-

ing Python Scikit-Learn library (Pedregosa et al. 2011).  
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Fig. 4: Applied ML-based approaches in this study, covering a) the SVM, b) the CART-based 

regression tree, c) the multi-layered ANN and d) the forward propagating ELM. The 

schemes show examples of how the approaches are used to solve hydrological problems. The 

SVM creates a separating hyperplane, while the CART represents a cookbook to follow. 

ANN and ELM are networks of neural nodes that alter an information on its way through 

the network towards the desired target. 

2.1.1 Support Vector Machine 

A Support Vector Machine (SVM) originates from the family of error-based learning meth-

ods. It tries to find a decision boundary to either classify the unknown target into a group of 

predefined classes or to solve the regression task (Cortes and Vapnik, 1995). The fitting of 

the algorithm takes place in a high dimensional space, where the margin between the nearest 

features to the boundary (the so-called support vectors) is maximized (Fig. 4a). In the higher 

dimensional domain the hyperplane is adjusted for the vectors closest to the separating hy-

perplane. By retransformation the higher dimensional result is transferred back into the di-

mension of origin. 

A SVM model is defined as in Eq. (2.1), where q is a descriptive feature, [d1 … ds] are 

support vectors and w0 is the first weight of the decision boundary, α describes a set of pa-

rameters that is optimized while fitting the hyperplane and ti represents the unknown target. 

The product is a Lagrange multiplier with the parameters α, d and w0 that leads to a con-

strained quadratic optimization problem which has to be solved (Kelleher et al., 2015). 
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In most cases the input features have to be mapped to a higher dimensional space, as the 

input data does not solve the regression task in the original feature space or the separation is 

not obvious. Therefore, a kernel function migrates the data into a higher dimension until the 

regression task becomes solvable. In this study, a radial-base-function (RBF) kernel is used 

to transform a non-separable problem into a higher dimension in order to minimize training 

time (Chang et al., 2010). Other kernels, like a linear or a sigmoid kernel, vary the results 

only slightly, so to keep results simple, only the results with a RBF kernel are shown here. 
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For more in-depth information on SVM see Vapnik (2013).  

To solve the SVM, a set of parameters has to be set. In this case the penalty term C and the 

term ε, for defining the margin that defines the border after which no penalty is given because 

of classification errors, need to be determined. C is set to 0.1 in order to lower the influence 

of a misclassification and have a smaller margin of the hyperplane. The parameter ε describes 

the distance from an actual value not causing error in the fitting process to the dividing hy-

perplane. It can be set to 0.1 because of the normalization of the input. Moreover, the error 

is further lowered if the hyperplane is too narrow. The parameters remains constant over the 

fitting and are not target of further improvement or optimization. 

2.1.2 Classification And Regression Tree (CART) 

Regression trees represent a guide book to make decisions in classifications in form of a 

branched tree. The information tree follows the ID3 (Iterative Dichotomiser 3) method where 

a tree of nodes with certain decisions of the character of an element x is analyzed to eventu-

ally be classified as a member of a class Ti. At each node a specific characteristic of x leads 

to either the next node or finally the leaves that represent the target classes. As shown in Fig. 

4b the element x0 is checked whether it is smaller than 0.2 that leads to the next node where 

element x1 of a sample is checked whether it is higher than 0.7 leading to the result that the 

target has the value of class “red” in this example. The here applied information-based De-

cision Tree Regressor originates from the CART family (Breiman et al., 1984), and was also 

derived from the ID3 algorithm (Quinlan, 1986; Kelleher et al., 2015). Regression trees are 

built node per node with a successive reduction of regression error between the estimate and 

the true value (Fig. 4b). As a limiting parameter the maximum depth can be defined. This 

describes the number of nodes from the root to the leaves. Here, the depth is set to 1/10 of 

the available input features. The data point showing the highest impact on the reduction of 

error in the regression becomes the root of the tree. The other branches follow the hierarchy 

of error reduction leading to a further ramification of the tree. Finally, the branches result in 

leaves which are the regression result or the final labels assigned to the unknown object. To 

quantify the reduction of regression error, often the Root Mean Squared Error between target 

and estimated value is used. Generally, the decision tree acts like a guidebook to segment 

the input to data, leading to the desired regression outcome.  

Neither boosting nor bagging are implemented in the CART. The maximum depth of the 

tree is set to half the number of input values to avoid overfitting. The minimum depth is 3 

taking in short runoff windows all values into account. Generally, a CART like algorithm is 

part of the complementary investigation because its structure is easily interpretable like a 

guide book through the data.  

2.1.3 Artificial Neural Network 

The Artificial Neural Network (ANN) is a classification and regression approach that is in-
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spired by the structure of the human brain (Goodfellow et al., 2016). Input features and tar-

gets are connected within a network through a number of hidden layers and nodes (Fig. 4c). 

This means that a sequence of input features is dissolved into single parts and guided through 

the network. The influence of the input features is varied through various hidden layers and 

nodes. On each hidden layer an activation function maps the input feature to the next layer. 

The connections between layers and nodes have updateable weights that control the mapping 

of the input feature to the desired outcome (Haykin, 1999; He et al., 2014). Whether a neural 

node is activated or not is controlled by the activation function. Once a threshold is reached 

the node actively influences the outcome by its weight. The weights of connections and 

nodes are updated during the process of fitting the network to the data. As the update infor-

mation is just passed backward through the network, the process is called backpropagation. 

The ANN used in this case-study is based on a multi-layer perceptron using a stochastic 

gradient descent for optimization (Goodfellow et al., 2016). As the number of hidden layers 

cannot be determined unbiased and has to be estimated by trial and error, the initial setup of 

the ANN was kept simple in the case study, limited to 1 hidden layer with 1,000 neurons. A 

detailed analysis of the influence of the ANN geometry can be found in Sec 2.5.4. As the 

default activation function the Rectified Linear Unit function was chosen. Like in a CART 

tree every input value has a certain influence on the regression outcome. The weights per 

connection and node lead to the final output layer and vary the numerical influence of each 

input feature on the results.  

As activation function between the layers, the choice fell on the tangens hyperbolic (tanh) 

function tanh as it is a rather smooth s-shaped activation function for small data sets (In-

grassia and Morlini, 2005). Other common activation function like the rectified linear unit 

(ReLU) can be ruled out due to the non-linear data hydrological data represent.  

2.1.4 Extreme Learning Machine (ELM) 

An Extreme Learning Machine is a special form of an ANN with fixed node weights from 

input to the hidden layer (Fig. 4d). The name “extreme” originates from the learning speed 

of this approach. Due to the limitation of updated weights, the ELM learns faster than com-

parable MLPCs. The connections from the nodes of the hidden layer to the outcome are 

updateable (Huang et al., 2004). The weights of the nodes are estimated randomly in the first 

iteration of fitting and remain the same for the whole process of fitting. The simplification 

of the update process results in faster learning while the regression output remains stable in 

comparison with the ANN and big data sets. The mathematical definition of an ELM is given 

in Eq. (2.2) where the number of hidden nodes is N, the activation function g(x) for each 

sample x and the weight β of the vector connecting the hidden node and the output node 

(Baraha and Biswal, 2017) 
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As activation function g(x) also the tanh function is utilized. By the reduction to only one 

layer, an ELM trains faster than an ANN and has the smallest training error (Baraha and 

Biswal, 2017). 

2.2 The No-Free-Lunch-Theorem – addressing the problem of model choice 

The plethora of available ML approaches results in a non-obvious choice for the relevant 

problem. The No-Free-Lunch-Theorem (Wolpert and Macready, 1997; Ho and Pepyne, 

2002) addresses exactly this problem: If an arbitrary method performs well on a certain type 

of problems then it will achieve a degraded performance on the remaining problems. For 

example if a ML algorithm is able to separate runoff events on an hourly data base then the 

algorithm will also be able to separate events on a daily data base but with a degraded per-

formance. Eventually, this theorem states that all approaches will perform with a degraded 

performance and a varying amount of training effort to achieve the performance (Schu-

macher et al., 2001). Wolpert’s No-Free-Lunch theorem states that no algorithm can beat 

random guessing in cases that the data is uniformly drawn from all mathematically possible 

functions which is not the case in real world problems (Wolpert and Macready, 1997; Do-

mingos, 2012). In the quintessence, there is no overall preference towards a single approach 

but the choice heavily depends on the question and the available data. Hence, multiple dif-

ferent approaches have to be tested and compared especially in the data-driven approaches 

where the solution might be biased by the data choice and less by expert decisions.  

For the application presented in this thesis, the No-Free-Lunch-Theorem means that for any 

real world application, like hydrological or water resource management questions, a set of 

different approaches has to be considered and compared in terms of their respective ability 

to solve the question and retrieve the desired information from the data. Thus, a set or even 

a combination of soft computing approaches might be a suitable way to derive the desired 

information solely from the given data and a general recommendation cannot be given (Sol-

omatine and Ostfeld, 2008). 

2.3 Machine Learning based temporal flood event separation 

In the following section the aforementioned approaches were tested for their ability to sepa-

rate single runoff events from continuous time series of runoff. Flood event analysis is a 

widely used approach in hydrology to characterize the reaction of a watershed to a rainfall 

event (Maidment, 1993; Blume et al., 2007). Although a great variety of tools exist to extract 

single runoff events from continuous time series of runoff, none of them is applicable in all 

cases: manual separation requires heavy workload (Blume et al., 2007; Hall, 1968), tracer-

based methods on the other hand need large databases that are often not available (Klaus and 

McDonnell, 2013). Although the latter allows a separation of the runoff into single compo-

nents that can be linked to distinguishable processes within the catchment (Weiler et al., 
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2018), high costs and the lack of applicability on historical data sets are downsides of this 

method. Recession-based approaches often require manual correction or computational in-

tense recalibration (Tallaksen, 1995; Hammond and Han, 2006; Mei and Anagnostou, 2015). 

Hydrologists defined several rule sets to separate flood events manually (e.g. Furey and 

Gupta, 2001), which reduces the flood event separation to a pattern recognition problem. 

Thus, the intention was born to automate the flood event separation by ML. A similar, yet 

not comparative approach for baseflow separation was conducted using ANNs (Corzo and 

Solomantine, 2007) or digital filters (Chapman, 1999). None of these studies investigated 

the influence of the algorithm choice on the outcome or the amount of training data needed 

to achieve suitable results. 

2.3.1 Adaption of ML algorithms for flood event separation 

With the help of the ML algorithms, the beginning and the end of a runoff event were esti-

mated. The ANN and the ELM both consisted of a single hidden layer with a tanh activation 

function and 1,000 neurons to map the input values to the desired outcome. The SVM was 

fitted automatically with a RBF kernel to map the problem to a higher dimensionality. Other 

kernels were tested but were rejected due to worse separation results or longer computational 

time. The ML approaches tried to identify the markers of the beginning and the end of the 

flood event. The training data and the true data for reference were derived from manual 

separation. The ELM and the ANN required at least three training storm events to converge, 

whereas SVM and CART did deliver results with only one sample. So, the minimum amount 

of samples for all approaches was set to 10 runoff sequences to avoid underfitting. 

ML approaches require input data of the same length, so a window of runoff with the desired 

event has to be cut from the complete time series. Therefore, the complete time series of 

runoff was divided into windows of the same length with the peak of the event as the center. 

For the case study in this work a window length of 200h with the peak as the center was 

chosen (Uhlemann et al., 2010; Nied et al., 2014). Within the 200h the beginning of the event 

as well as the main part of the recession curve in small- and medium-scale catchments should 

be covered. Both time steps of interest, the beginning and end of an event, were represented 

through markers (subdivided into tStart and tEnd). Consequently, both tStart and tEnd varied be-

tween 0 and 200. All 200 runoff values from the snippet were taken as input values. Apart 

from the cutting of the time series into chunks, no further pre-selection of data took place. 

2.3.2 Data choice and pre-processing of runoff data 

For this case study, hourly runoff data from ten different Bavarian catchments were taken 

from 1961 until 2015. Those events leading to the highest monthly discharge were consid-

ered as the events of interest. The runoff was normalized by the gauge specific mean dis-

charge. The target for the automatic separation by the ML approaches are the temporal mark-

ers of the begin and the end of the flood event. Events with missing data were eliminated 

from the data base. As mentioned before, the training data was derived in the shape of win-

dows of 200h length from the highest daily discharges from the ten different catchments. 
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The number of events was nearly even for each catchment leading to ca. 40-50 events in the 

database per catchment. 

In order to determine the needed amount of training data for a successful learning of the ML, 

algorithm the training data set was constantly increased from 10 - 95% incrementally by 1% 

of the available data. Three major basins are the organizational units in which the ten catch-

ments are located (Fig. 5). The three major basins: Regen, Main and Iller represent different 

natural units with varying sizes, mean altitudes and physio-geographical properties (Tab. 14, 

see appendix A).  

The Iller basin is the highest of all catchments in this study with a mean catchment height > 

1.500 m a.s.l. The catchment is located in the northern Alps of Bavaria that consist mainly 

of calcit rock (Landesamt für Umwelt Bayern, 2017). With a size of 35.6 km² it is smaller 

than the other catchment of the Iller basin: Immenstadt-Zollbruecke. Located in the lower 

parts of the Bavarian pre-alpine area it covers 724 km². 110 events are related to both catch-

ments of which Immenstadt-Zollbruecke comprises 60 and Birgsau 50 flood events. 

In the Regen basin, the size of the four catchments varies between 115.9 km² (Lohmann-

muehle) and 2590.4 km² (Marienthal). The catchments are located in the geographical unit 

of the Donau-Isar gravel plains. Because of the river bed geology in gravel plains, interme-

diate storage is higher than in the alpine catchments of the Iller basin. The gradient of height 

in these catchments stretches from the East to the West with the highest mid-mountain range 

at the eastern border in catchments Lohmannmuehle and Zwiesel. In total, 242 runoff events 

are available for the Regen catchments. The variation in numbers of events per catchment is 

low, because the minimum number of events is 56 (Kothmaissling) and the maximum 

reaches up to 65 (Lohmannmuehle).  

The rivers of the Main catchment do not discharge into the Danube like the rivers in the other 

two main basins but eventually in the river Rhine and the North Sea. The four catchments 

range in a size between 11.1 km² (Friedersdorf) and 165.3 km² (Lohr). While the eastern 

parts still have mid-mountain heights of > 1.000 m a.s.l, are the western parts located in the 

lower parts of Bavaria. The natural units in which the catchments are located in vary between 

plains (Friedersdorf, Lohr, Untersteinach) and hillsides (Gampelmuehle). 
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Fig. 5: Map of Bavaria with topography from SRTM data (Jarvis et al., 2008) and the location 

of the 10 catchments that were considered in this study. The catchments are grouped into 

three major basins (Iller, Regen, Main) with different geographical characteristics. 
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Fig. 6: Hydrograph separation problem, covering a flood event with a single peak embedded 

in a continuous time series of discharge. The blue marked area represents the manually 

separated reference event, whereas the red marked event is estimated by the machine-learn-

ing algorithm. The straight line connected markers delineate the baseflow from direct run-

off describing the catchments response to an event 

The time steps tstart and tend represent the target variables of the four chosen ML approaches 

(Fig. 6). Due to their continuous nature, the ML approaches solved a regression problem but 

not the classification problem as the target is not a per se defined class but a numerical value 

representing the time step. In the next step the performance metrics have to be defined to 

judge the ML performance (Domingos, 2012). 

2.3.3 Manual separation rules for training data 

As input feature and single explanatory variable the complete window of runoff data was 

taken. A manual separation of the flood events acted as reference. The reference events were 

derived by the rules by Furey and Gupta (2001): 
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1. The beginning of an event is the starting point of the rising limb around the peak. 

The end is characterized trough recurrence to the recession of the hydrograph before 

the event. 

2. Discharge at the ending point Q2 has to be bigger than discharge at starting point Q1 

in order to separate an event as a single event. 

3. In case that a subset has more than one peak (local maxima), all peaks belong to one 

event if the following local minima Q2,i is higher than Q2,i+1 where 𝑖 denotes the index 

of peak in the subset. In case that Q2,i+1 is equal or higher than Q2,i the subset is di-

vided into multiple events. 

Knowledge on the domain (here the catchment specific runoff characteristics) added more 

information which cannot be modelled by traditional approaches where expert knowledge is 

often hard or impossible to incorporate without losing transferability of the model (Solo-

matine and Ostfeld, 2008). Naturally, every choice of a reference value for separation adds 

a bias to the result, but this bias is systematical within the application. This systematic bias 

only limits the significance of the determined preferred algorithm for this specific choice of 

algorithms but not the general applicability of ML approaches for flood event separation. An 

unbiased general classification scheme for flood event types would significantly lower the 

bias of the reference value.  

2.3.4 Performance metrics to judge separation quality 

To measure the performance of the ML-based separation, two characteristics of the hydro-

graph were chosen: the volume of the direct runoff and the temporal coverage of the ML 

separated events with the benchmark data, derived from the manually separated events (Fig. 

6). To judge the volume error of the separated events, the RMSE of volume was calculated, 

where N denotes the number of events, v is the volume divided into volume of observed 

event vobs and the volume of the estimated event vest: 
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To show the direction of volume error, the Mean Volume Ratio (MVR) was used, which 

utilized the same notation of variables like in Eq. (2.3). The optimum value of MVR is 1.0, 

where the mean volume of events separated by ML algorithms and manually separated 

events was equal:  
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The temporal coverage Cov is a criterion that relies on a position comparison between true 

event and estimated event. The time intervals (positions) covered by separated and true event 

were analyzed Eq. (2.4), where Int denotes the intervals of either true or estimated event 

divided by the number of true intervals only regarding the amount of positions which belong 

in both scalars: 
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For example, the true event starts at interval 95 and ends at interval 102 and the estimated 

event starts at interval 96 and ends at interval 103, the relative coverage comprises intervals 

[96, 97, 98, 99, 100, 101, 102] which would result in a relative coverage of 0.875 showing 

that 87.5% of all intervals in the estimated event are also covered in the true event. 

Among the investigated ML approaches, the preferred approach was determined. Therefore, 

it was investigated which approach delivers the best performance measures with the smallest 

amount of training data. So, in case that e.g. SVM was able to separate events with a similar 

volume (MVR converging to 1.0) with the lowest amount of training data and the temporal 

coverage is close to 100% using SVM, the choice of approach was obvious. If, in a different 

catchment, the RMSE was lowest and MVR close to 1.00 using the ELM and only 15% of 

the available training data, but Cov was highest using SVM, the preferred algorithm was 

ELM, because of the focus on the volume as the main characteristic of interest. Conse-

quently, a relative ranking facilitating the choice of the approaches was derived. 

2.4 Separation results 

2.4.1 Individual machines per catchment 

Considering the RMSE of the separated volume in contrast to the manual separation, the 

general development showed that the volumetric error increased the more data was used for 

training. This rise of error was observable over all approaches (SVM, CART, ANN and 

ELM), yet the shape is different (Fig. 7). Moreover, the catchments located in the Main basin 

(Lohr, Friedersdorf, Untersteinach and Gampelmuehle) showed with RMSE ~ 0.2 – 0.3 m³ 

a lower volumetric error than those in the Iller basin (Birgsau and Immenstadt-Zollbruecke), 

that have a final RMSE ~ 0.35 – 0.4 m³. Generally, the RMSE was low over all approaches 

regardless of the region or the chosen approach. No preference towards any method became 

obvious although in some regions the RMSE has risen like a hockey-stick (e.g. Immenstadt-

Zollbruecke) whereas in other regions the RMSE rose linearly (e.g. Birgsau or Zwiesel). 

Catchment Gampelmuehle behaved differently than all the other catchments, reaching a plat-

eau of stable error using ~ 65% of the available data for training. 
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c) 

Fig. 7: RMSE of volume covering all approaches in all catchments (a,b,c). The more data is 

used for training, the higher the RMSE of volume gets. Most catchments show a hockey-

stick behavior. By the final level of error, a choice cannot be made among the approaches. 

In contrast to the evaluation of separated events by RMSE, a preference towards SVM and 

ELM was visible for the evaluation by MVR (Fig. 8). Apart from catchment Gampelmuehle, 

the SVM improved the results with a MVR close to the optimum of 1.0 using mostly 20-

30% of the available data for training. CART generally underestimated the volume of the 

automatically separated events. The ANN was not able to deliver stable results in any of the 

catchments while the ELM with its special structure was able to score stable and good MVR 

scores but with a higher demand for training data. 

Considering the Cov of the automatically separated events, again SVM and ELM delivered 

the best results covering >60% (SVM) respectively > 80% (ELM) of the true event (Fig. 9). 

Again CART scores lower values than SVM or ELM. In the Main catchments (Marienthal, 

Kothmaissling, Lohmannmuehle and Zwiesel) the CART results improved, whereas in the 

Regen catchments (Gampelmuehle, Friedersdorf, Lohr and Untersteinach) deteriorated the 

more data is used for training. Again, the ANN did not show any influence of the amount of 

training data on the performance metric. 
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Fig. 8: Mean Volume Ratio of all ML approaches (a,b,c) over all catchments. Differences in 

terms of volume estimation capability become obvious, favoring SVM and ELM. 
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c) 

Fig. 9: Coverage (Cov) of all catchments using all four approaches (a,b,c). 100% coverage 

marks the optimum value. ELM seems to be the method of choice over all catchments 

scoring Cov values > 80% with less than 20% of available data used for training. 

2.4.2 Separation results of global machine 

Next to the individual fitting of a machine per catchment, the applicability of a global ma-

chine was tested as well. Therefore, all available training data was merged to a global data 

set and resampled 10 times to shuffle the composition of the data for each individual run and 

to avoid a selection bias. This merge resulted in a data base of 537 manually separated events. 

The separation results of the global machine were in line with the results from those of the 

individual machines, strengthening the preference towards SVM and ELM (Fig. 10). CART 

again underestimated the volume. ANN did not deliver stable results in any of the runs. The 

resampling revealed only slight variations within the runs. Hence, one can assume that the 

variation within the composition of data has only slight influence on the results of the sepa-

ration. The application of a globally trained machine showed that one machine is sufficient 

to separate flood events automatically with only few (< 10 manually separated) training 

events.  

Because of the low number of required events for training, one can assume that not all catch-

ments are represented in the training data. Hence, the global machine was able to separate 

flood events in catchments where no dedicated information is available.  
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Fig. 10: Separation results from global machine for all three performance measures (a,b,c). 

The training data was resampled 10 times to avoid selection bias. 

2.5 Discussion of automatically separated events 

Generally, ML based approaches were able to automatically separate single runoff events 

from continuous time series of runoff. Yet, as mentioned in other ML studies in hydrology 

the choice of the ML approach has an impact on the quality of the results and the so-derived 

conclusion whether the chosen ML strategy suits the problem or not (Solomatine and Ost-

feld, 2008; Raghavendra and Deka, 2014; Shortridge et al., 2016). 

Returning to the initial research question: Are ML algorithms able to detect patterns in runoff 

and are they able to separate flood events from continuous time series of discharge? Consid-

ering all catchments individually, one can see that two approaches stand out: SVM and ELM. 

The preference of algorithm per catchment could be found in Tab. 1. Both delivered stable 

results in terms of MVR and Cov with only a small training data set. On the third place was 

the CART algorithm that was influenced stronger by the training data. CART either got 

better or worse, whereas ELM and SVM nearly showed constant performance using small 

training data sets (comprising less than 10 events per catchment). Due to their similar struc-

ture ELM and SVM played a head-to-head (Liu et al., 2012): SVM performed better in terms 

of MVR whereas ELM scored higher Cov values. Consequently, ELM estimated the events 

longer than SVM because Cov reached 100% if all true time steps were also covered by the 
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automatically separated event. This finding was underlined by studies showing the capability 

of SVMs in hydrological applications (Raghavendra and Deka, 2014; Tabari et al., 2012; Yu 

et al., 2017) 

If the ML overestimates the length, Cov might stay at 100% but MVR would be higher and 

less close to the optimum. An overestimation of the coverage has less influence on the sep-

aration performance, because the volume of the event is slightly overestimated. Thus, the 

MVR is the most important ratio to judge the goodness of ML choice as the RMSE shows 

only slight variations. The results from the global machine underlined the findings from the 

individual machines: SVM and ELM tend to be the most suitable tools for this specific case. 

Additionally, one can derive from the merged data set that a globally trained machine is able 

to separate flood events automatically, even in catchments not represented in the training 

data. 

 
Tab. 1: Ranking of ML algorithms per catchment   

No.  Name Main basin 1.Choice 2.Choice 3.Choice 

1  Birgsau Iller SVM ELM CART 

2 
 Immenstadt-Zoll-

bruecke 
Iller 

SVM 
ELM CART 

3  Friedersdorf Main SVM ELM CART 

4  Gampelmuehle Main ELM SVM CART 

5  Lohr Main ELM SVM CART 

6  Untersteinach Main SVM ELM CART 

7  Kothmaissling Regen SVM ELM CART 

8  Lohmannmuehle Regen ELM SVM CART 

9  Marienthal Regen ELM SVM CART 

10  Zwiesel Regen ELM SVM CART 

 

 

 
  

 
  

 

2.5.1 Comparison of ML derived events with recession-based flood events 

To judge the separation performance of the ML algorithms a comparison is conducted with 

Blume’s constant k approach (Blume et al., 2007). Blume’s constant-k method tries to fit 

multiple linear functions to the hydrograph to determine the change of the slope k. Thus, this 

approach analyzes the change of slope to determine the end of a stormflow event. To fit the 

linear functions a suitable window width for the slope analysis has to be found. This window 

length does not have any measurable components and is therefore a variable to be calibrated. 

The calibration of Blume’s constant-k method was conducted with the same events that were 

used for training of the ML algorithms. The width of the observing window Δt was estimated 
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by a Monte-Carlo simulations with 10,000 cases where the length of the time window and 

the sampling of training data is varied.  

In order to identify the beginning of the event the rising of the hydrograph is analyzed for 

the first dip of discharge that causes the sequent rise of discharge to the peak. As the con-

stant-k approach requires the fitting of multiple regressions for small time-steps, a global 

parameter set for all catchments was estimated to reduce computational time and to show 

the general ability of the method for regionalization. Calibration was conducted by compar-

ing the separated volume and the temporal mismatch with the manually separated events. 

The constant-k method was applied to four different catchments (chosen randomly from all 

Bavarian watersheds): Gampelmuehle, Lohr, Untersteinach and Friedersdorf. 

Using the constant-k method with a global parameter set, the overall volume was separated 

with a reasonable performance resulting in a ratio of 1.1 - 2.0, but the amount of data used 

for training did not reflect any increase in performance (Fig. 11). The mean temporal mis-

match of end and beginning of an event was variable. The Cov is worse than for the ML 

derived approaches as one can see in the median temporal mismatch between the events (Fig. 

12). Especially in catchment Friedersdorf the median temporal mismatch accounts for 100h. 

Using a window length of 200h the temporal mismatch already covers half of the observed 

period. With a median temporal mismatch of ca. 18h catchment Gampelmuehle shows the 

lowest temporal mismatch. Overall, the Cov and MVR is worse for the recession-based 

events than for the ML derived events. So, the ML-based approaches are a suitable tool for 

the separation of flood events from time series of discharge and outperform traditional re-

cession-based approaches like the here presented constant-k approach by far. What becomes 

obvious is, that the constant-k approach shows severe errors in the quantity of the estimated 

event. This is mainly due to the fact, that recession-based approaches rarely hit the start of 

the storm runoff event. But for analyzing floods, especially extreme floods, the behavior of 

the flood wave at the beginning is of importance. Thus, the recession-based approaches, like 

the here discussed constant-k, are not suitable and more complete results like those from ML 

are required. 
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Fig. 11: MVR of constant-k derived events in comparison to manually derived flood events. 

One can see that the events overestimate the volume massively. 

 

Fig. 12: Median temporal mismatch of constant-k derived events. The highest mismatch be-

comes visible in catchment Friedersdorf where more than 100 h difference of event length 

can be observed. 
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2.5.2 Spatial patterns of algorithm preference 

Due to the different ranking of algorithms per catchment (Tab. 1), one can suspect a spatial 

pattern of the preferred ML algorithm. In the alpine basin of the river Iller, both catchments, 

Birgsau and Immenstadt-Zollbruecke prefered the SVM for flood event separation as indi-

cated by the red marked area (Fig. 13). In the Main basin catchments on the other side, no 

clear preference became visible in the spatial pattern. Two headwater catchments (Frieders-

dorf and Gampelmuehle) prefered different algorithms (SVM and ELM), while similar sized 

catchments like Untersteinach and Gampelmuehle also showed a different preference to-

wards the most promising ML approach for the task of flood event separation.  

 

Fig. 13: Preferred algorithm in the Iller basin and the Main basin catchments (red equals 

SVM, blue equals ELM). 

Most of the Regen basin catchments prefered ELM over SVM (apart from catchment Koth-

maissling). Again, the information concerning the relative location of the catchment or its 

size did not have influence on the preference towards any algorithm. Also a direct neighbor-

hood between the catchments did not automatically lead to a shared preference as it could 

be seen for Marienthal and Kothmaissling (Fig. 14). Interestingly, Lohmannmuehle, Zwiesel 

and Marienthal are nested catchments and have an East-West flow direction, that showed a 

preference towards the ELM algorithm. So, one can conclude that there is no obvious rela-

tionship between the spatial patterns or preference of algorithm and the spatial catchment 

characteristics. But one can assume that nested catchments might have a similar preference 

towards the most suitable ML algorithm. The reason for similarities and dissimilarities must 

be hidden in the pattern of data and the respective information content of the data used for 

training.  
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Fig. 14: Preferred choice of ML algorithm in the Regen basin catchments (red equals SVM, 

blue equals ELM). 

2.5.3 Uncertainty induced by window length 

The induced uncertainty by the chosen window length of 200h was discussed by a brief 

discussion on the most frequently chosen start and end points. If the window is too narrow, 

most of the chosen start and end points will be located at the fringes of the window. There-

fore, a CART tree was deconstructed revealing the most important nodes (is equal to the 

topmost nodes) of the decision tree thus revealing which runoff values are most important 

for the estimation of the start and the end (Fig. 15). One can clearly see that most of the 

important runoff values were located within 30h around the peak in each direction, this 

equals a window length (WL) of 30 steps. Most of the second-most important nodes were 

located within 50h before and 50h after the peak. As the nodes acted as guides through the 

tree to the leaves, the target of the guides had to be evaluated as well. A detailed investigation 

of the final position of the markers revealed that in 0% of all cases the beginning was set to 

time step 0. In 2 – 6% of all cases was the final marker set at time step 200. Hence, the 

chosen length of 200h has no negative influence on the decision structure and the relevant 

information is located around the peak. For the beginning or the end even runoff values on 

the respective temporal opposite of the peak are of importance, here the pattern is not obvi-

ous for the researcher. This shows the need to take all 200 runoff values into account as the 

information content for the ML algorithms is not necessarily easy to predict beforehand. 
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Fig. 15: Positions of the two most important runoff values for the determination of the start 

and end. The most important information for the separation is located within 60 time steps 

from the center.  

2.5.4 Performance issues of ANN in flood event separation 

The ANN did not show stable behavior in anye of the catchments investigated here although 

the number of hidden layers and neurons was the same as in the well-performing ELM. In 

order to exclude the geometry from the list of possible errors, the same task was conducted 

with varying numbers of neurons (500 – 10,000) and layers (1 - 4). All of the tested config-

urations showed unstable behavior as shown by the MVR over all runs (Fig. 16). Although, 

less neurons and more layers (configuration L4 / N500 with four hidden layers and 500 neu-

rons each) showed the most stable results over all configurations, the performance was worse 

than for any other approach presented in this case study. A completely simplified ANN with 

only 1 Layer and 200 neurons did not converge with an acceptable learning rate in 10,000 

iterations and was consequently not presented here. 
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Fig. 16: Uncertainty induced by different ANN geometries. 

Overall setups with a lower number of layers, in this case all L1 runs, showed a lower spread 

of volume error, whereas the complex models showed a higher spread around the optimal 

value of 1.0 (Fig. 16). Heteroscedasticity did not apply here, because the results shown are 

independent from the training data. One can derive from this investigation that the ANN 

with the chosen general structure of backpropagation was not able to detect any patterns in 

the input data it can link to the output. The ELM, which is a special case of the ANN with 

forward propagation on the other hand, was able to achieve good scores for the specified 

problem.  

Because the ANN has proven its general applicability in hydrological research, the specific 

problem of flood event separation was not well suited or the structure of the input data with 

chunks of time series data did not match the expected structure. In future research a deriva-

tive of the ANN specialized on time series analysis will be tested. Furthermore, the MLPT 

setup of the ANN will again be tested in a different hydrological context to analyze whether 

the disappointing performance is problem or data-structure specific. 

As the structure of the algorithm reveals no hints on the performance of ML algorithms, the 

reason for the different performances must be found in the underlying data. Therefore the 

information content and the structure of the information has to be investigated to judge the 

performance of the ML applications. 
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3 Information-theory based criteria for data mining 

 

As it became evident in the previous chapter, catchments share similarities not necessarily 

visible in the Meta information that one can derive from physio-geographical characteristics 

but supposedly in the internal structure of the data. This means that the information content 

and the interdependencies within data reveal patterns that ML approaches detect and adapt 

on. Hence, detailed knowledge of the information content of a data set is crucial for data 

mining.  To measure the information content of data, the principle of Shannon’s entropy was 

developed (Shannon, 1948; Gong et al., 2014; Kelleher et al., 2015). The principle of entropy 

is a broadly accepted measure of information content within data and originates from signal 

processing. The information content is expressed by a probability P that the data x contains 

new information on a given data set. In the context of big data the information content is 

crucial to save computational time and storage. To find information in data, data mining 

approaches have been developed. Data mining approaches deliver answers to the questions 

that are related to big data: How much of the data has to be stored, which data is redundant 

in terms of information, what variability can be expressed by the data stored?  

For any data-driven approach the information content of the data is relevant. Redundant data 

confuse the ML algorithms because the noise/information ratio gets worse. Consequently, 

prior to any ML application the information content has to be determined and compared 

among the available variables and the target value. As the information content can only be 

investigated if a reliable truth data for comparison is available, a different field of research 

in hydrology has to be found than flood event separation as the reference data is per se biased 

and not measurable. Therefore, the underlying data of tracer hydrology is investigated. Here, 

the natural and chemical tracers allow an investigation of subterraneous hydrological pro-

cesses on a catchment scale. From the interplay of various tracer signatures, catchment re-

action, e.g. to stormflow, can be revealed and explained.  

3.1 Tracer prediction in karstic environments by ML approaches 

Tracer measurements are often the only way to separate streamflow into amounts per origin. 

This deeper understanding is often part of a model calibration strategy, especially in highly 

dynamic environments like karst springs. Single tracers are not always the key to success for 

a comprehensive understanding of the underlying natural system (Garvelmann et al., 2017; 

Lee and Krothe, 2001). Hence, pairs of tracers are often compared in order to relate their 
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dynamics to the dynamics of the underlying system (Mahler et al., 2009; Mudarra and An-

dreo, 2011; Hartmann et al., 2016; Hartmann et al., 2017; Klaus and McDonnell, 2013). 

Their dynamics capture the system’s behavior and reveal changing interactions of often hid-

den interactions. Therefore, the joint analysis of combined tracer measurements is a com-

monly used tool to investigate the interplay that lead to characteristic streamflow composi-

tions (Garvelmann et al., 2017). The choice of tracers for the investigation in this thesis fell 

on SO4
2- and NO3

-. While NO3
- is an indicator for fast water fluxes from the shallow surface 

(Mahler et al., 2009), SO4
2- is an indicator for slow geogenic contributions from the phreatic 

subsurface (Hartmann et al., 2017).  

As mentioned before, tracer-based methods are among the most widely used techniques to 

separate streamflow and describe the underlying processes with relatable chemical measure-

ments. As the reproducibility of tracer measurements in situ is impossible, the need for a ML 

approach to fill gaps or recreate time series of tracer measurements evolves as it allows the 

prediction of something hard to measure with something easy to measure. Further downsides 

of tracer-based methods are relatively high costs for permanent measurement setups as well 

as an increased manual workload to analyze in-situ measured probes. So, the question is 

whether runoff data, which is available in data bases for more regions than tracer measure-

ments, is able to predict tracer concentrations. This presumes that runoff data has equally the 

same continuous entropy as the mutual information between tracer and runoff and hopefully 

between pairs of tracers. The main idea is that runoff values and their dynamics contain 

enough information to predict the tracer dynamics from the derived patterns (Mewes et al., 

2018).  

The runoff was taken as daily values from Banque Hydrologique (Eaufrance, 2018b) and 

tracer measurements of both tracers are derived from ADES (Eaufrance, 2018a) with a sub 

daily temporal resolution. As ML approaches like SVM and CART are not able to process 

time series data well, snippets from the time series of runoff were taken (Fig. 17). Per pair 

of tracer measurement, a snippet was taken, thus the total number of snippets exceeds 1,200 

pairs of concentration measurements. The optimal length of the window is unknown. There-

fore, a variation of lengths was tested and performance measures like the RMSE were pre-

sented as a boxplot covering the complete range of window length.  

For the prediction, the ML algorithms were meant to predict the normalized tracer concen-

tration. The main aim was to predict complete time series of tracer measurements from run-

off. Therefore, the most suitable ML strategy had to be found. To find the most appropriate 

approach, two different strategies of prediction were applied: The univariate prediction and 

the multivariate prediction. The primer fitted a ML algorithm per tracer (resulting in the 

equal number of machines and tracers to be predicted) while the latter trained one machine 

for both tracers. In cases that dependencies between the two tracer data sets were observable 

in the data, one could reveal those dependencies with that analysis. The approach to combine 

ML approaches for a better prediction capability is referred as complementary approach 

(Solomatine and Ostfeld, 2008). Here, different sets of machines were combined into a Meta 
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machine to achieve the best result. For example, if a tracer A’ can be predicted by the runoff 

and the tracer B can be predicted in a better way by the runoff and the information about 

tracer A, resulting ML setup should train a univariate machine for target A’ and a comple-

mentary multivariate machine for target B’. Furthermore, by MI and the comparison of learn-

ing strategies the direction of information flow could be examined. If tracer B’ can be pre-

dicted in a better way by incorporating the information from runoff and tracer A, the infor-

mation flows from tracer A to tracer B. 

For cross validation the available data was again divided into training and testing data. To 

visualize the impact of the amount of training data, the share of training data was incremen-

tally increased by 1% from 5% - 95%. To avoid bias by the ordering, the training data sets 

were resampled ten times. Once drawn, the pair of tracer measurement was not returned, so 

doubles in the training data are excluded.  

The CART tree was neither boosted nor bagged but the maximum depth was given by half 

the window length and a minimum of 1 nodes. So, not all runoff values of the snippet were 

considered in the CART tree and overfitting was prevented. The SVM used all available 

input data with a RDF Kernel and the penalty term C = 0.1 and ε = 0.1 which defined the 

margin where an error in fitting the hyperplane to the supporting vector was not punished by 

a penalty. Like in the flood event separation, the ANN and the ELM represented both the 

neural networks. The latter is a special version of the former, as documented in the section 

on ML approaches in Section 2.1.4. The ANN and the ELM consisted of one layer and the 

same number of neurons as half the length of the input window of runoff, the minimum 

amount of neurons is three. This would consider all input values of the runoff series as rele-

vant for the ML prediction. Smaller windows of input data caused convergence errors and 

led to erroneous interpretations of underfitted values. 
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Fig. 17: Schematic application of machine-learning for tracer concentration prediction by win-

dows of runoff. 

As mentioned before, the length of the snippet of runoff values from the time series was 

varied in order to test which length of runoff information was required for tracer prediction. 

The smallest possible window had a length of three days with a maximum of half a year, 

which reflected the medium response time of slow catchments. The reference point for the 

tracer measurement was located at the center t’ of the runoff snippet (Fig. 17). For each 

predicted concentration the outcome of the prediction was compared to the true measured 

tracer concentration. In contrast to the flood event separation, a real-world true value of the 

tracer concentration was available. Consequently, the information content of the input data 

as well as the shared information with the output were calculated. As memory plays a role 

in the understanding of a catchment’s reaction, the different windows of input data are tested 

(lasting up to 180 days). 

3.2 Definition of entropy and mutual information 

To measure the information content in the tracer data a suitable measure of information con-

tent has to be found and defined. The Shannon entropy measures the information content of 

data by its impurity (Kelleher et al., 2015). For a classification problem, the entropy H is 

defined by the chance of a sample xd to be of one of the given classes {x1, … xNt} with P(xn) 

as the probability that Xt = xn with a sample length N and the data set X: 
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The above presented Shannon entropy measures the information content in bit according to 

the base 2 of the logarithm in Eq. (3.1). Other units are possible by different bases of the 

logarithm, but are not necessary for the applications presented in this thesis.  

The main problem of Shannon’s entropy model is the limitation to discrete target variables. 

In the flood event separation no classification into defined types is conducted because no 

true reference classification exists. Because of the limitation of the Shannon entropy to dis-

crete classes in the data, the concept of entropy can be extended to measure the continuous 

entropy h(Xc): 
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Here, f(x) is the probability density function of the continuous sample Xc and   is the de-

fined domain of Xc (Gong et al., 2014). In order to measure the shared, or Mutual Infor-

mation, between two data sets the concept of entropy is again extended to the conditional 

entropy (Thomas and Cover, 2006; Sharma, 2000). In contrast to the classical concept of 

entropy the explanatory power of Mutual Information (MI) has a direction. The MI gives 

insight on the information flow between variables. Between two variables x and y MI is 

defined as: 
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In this definition, fx(x) and fy(y) are marginal probability density functions of x and y. The 

joint probability density function of x and y is given by fx,y(x,y) for a sample with the length 

N. Following Sharma (2000) Eq. (3.3) can be approximated by: 

 
,

2

1

( , )1
log

( ) ( )

N
x y i i

i x i y i

f x y
MI

N f x f y

 
  

  
   (3.4) 

In this approximation the probability density functions represent the same sample of data 

(Sharma, 2000; Fernando et al., 2009). Due to empirical character of hydrological problems, 

a kernel estimator is used to retrieve the respective densities without the need to fit a known 

probability density function (Fernando et al., 2009).  

To analyze the information content of the runoff and the tracers and to finally judge the 

prediction capabilities of a ML-based approach for tracer concentration prediction, the MI 

of the chosen tracers and the continuous entropy of the input window of runoff are calculated 

and compared. 
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3.3 Data base 

As mentioned before, the data base comprised runoff data from seven French springs. The 

measurements were taken on a daily basis and cover a length from 11 to more than 50 years 

(Tab. 2). The measurement interval of the tracer concentrations varied from catchment to 

catchment and were not equidistant. In catchment Baget 24 pairs of tracer measurements 

(SO4
2+ and NO3

-) are recorded, whereas in Source du Lez 300 pairs of tracer measurements 

are available. The mean Pearson correlation between both tracers SO4
2- and NO3

- showed a 

strong correlation with r = 0.67 over all catchments. Because of the varying number of avail-

able tracer measurements, the training data was resampled 10 times per catchment to lower 

the influence of single measurements (Eaufrance, 2018a, 2018b). 

 

Tab. 2: Overview of used data for tracer prediction in karstic springs based on runoff data 

Source 
Length of daily runoff 

measurements 

Tracer measurements 

SO4
2- and NO3

- 

Baget 1968 – 2015 24 

Durzon 1996 – 2016 154 

Fontaine de Vaucluse 1966 – 2016 51 

Fontbelle 2004 - 2015 194 

Source de Fontestorbes 1965 - 2015 43 

Source de la Touvre 1980 - 2016 125 

Source du Lez 1987 - 2016 300 

 

The runoff was normalized by the catchment specific mean. Moreover, both tracer concen-

trations were also normalized by the individual catchment specific mean. Detailed infor-

mation on the measurement setup was not provided by Eaufrance. As mentioned before, the 

complete time series of runoff was cut into sequences with the pair of tracer measurement in 

the center.  

3.4 Performance metrics for tracer concentration prediction 

Like in the previous ML application a set of performance metrics was applied to identify 

well performing combinations of data sets and ML structures. In order to show the general 

prediction performance of both tracers SO4
2- and NO3-, the Root Mean Square Error (RMSE) 

for observed and estimated tracer measurements was applied, which becomes 0 for a perfect 

prediction. To calculate RMSE for the tracer content, cT as the tracer concentration was di-

vided into true and estimated, and a N is number of samples: 
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For both tracers, the RMSE is determined individually and presented as a mean of both. As 

the RMSE has no information of the direction on error, the average concentration ratio 
Tc

tells about the general strength and direction of the error. 
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By the sign of the mean concentration ratio the direction of over- and underestimation can 

be revealed. As the dynamics of the tracer pair is of interest, the accuracy of the relative 

ranking of both tracers is investigated. Therefore, the overall accuracy is calculated: 
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Here, the relative positioning of both tracers is calculated and its accuracy shows whether 

the interplay between the two tracers is captured or not. Here, the index tells about whether 

the estimated ranking is true or not. Positive (pos) and negative (pos) reveal which tracer is 

relatively higher than the other. A high Acc means that the ranking of both tracers is always 

captured in the right manor. The lowest possible Acc = 0 where no ranking reflects the correct 

situation between the two tracers. 

3.5 Entropy and mutual information of the investigated tracer data sets 

The continuous entropy of the complete time series of runoff from all seven springs was 

rather low, resulting in a low information content of the runoff data with only 1-2.5 bit (Fig. 

18). The more data was used, the already low information content was even lowered to less 

than 1bit. The MI between the tracers varied. In some catchments (e.g. Baget, Durzon and 

Source du Lez) it diminished at the same pace, the more data was used until some kind of 

turning point where suddenly the information content increased to more than 25 bit. The 

maximum of more than 200bit information seemed to be an outlier of the data and the ac-

cording situation of measurements should be excluded from further analysis. Nevertheless, 

the maximum MI among the two tracers reached a plateau at 25 bit -30 bit which was 15-20 

times higher than the continuous entropy of the runoff. Missing data in the curves of entropy 

and MI resulted from data samples where the density estimation of the mutual information 

did not converge, thus leading to NaN. 

In most cases, more than 70% of the available tracer measurements were needed to exceed 

the information content of the runoff (e.g. Durzon, Fontaine de Vaucluse, Fontbelle, Source 

de la Touvre and Source du Lez). In Baget the decoupling of both information contents 
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started earlier at about 25% of the available data. In total numbers: In Baget only 5 relatively 

unique tracer measurements were sufficient to capture the information variability, whereas 

in Fontbelle more than 135 pairs of tracer measurements were required to exceed the rela-

tively low information content of the runoff. 

A detailed analysis of these five tracer measurements was not feasible due to the historic 

character of the data set. Additionally, detailed information on the measurement setup, the 

environmental situation or any possible human influence on the results was not stored in the 

database and thus not accessible for researchers without detailed in depth knowledge. 

Although the mean continuous entropy and MI were used, one can see that the charts are 

ragged (e.g in Source de Fontestorbes). This means that single events still had a large influ-

ence on the information content. These events had to be included in training data to get the 

maximum information from the data. So, a training data set was chosen that contains the 

maximum amount of information by the lowest number of events in the sample which is 

known as the maximum entropy approach (Berger et al., 1996; Brodley, 2004; Phillips et al., 

2004). So, the absolute number of measurements is not the main driver of performance but 

the information content of the individual measurement. The lower the number of available 

tracer concentration measurements, the more ragged the MI chart and the earlier a plateau 

of information content was reached (e.g. catchment Baget, Source de Fontestorbes). Catch-

ments with a higher number of available tracer measurements reached the plateau later with 

bigger training data sets. 
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Fig. 18: Mean continuous entropy and mutual information between NO3
-and SO4

2-. The over-

all maximum of the mutual information is at about 25 – 30 bit, while the continuous en-

tropy does not exceed 2.5 bit. The lower the number of available tracer measurements 

(compare Tab. 2), the more ragged is the mutual information graph and the earlier a plat-

eau is reached. 
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In those cases, that MI was higher than the continuous entropy of the runoff (e.g. in catch-

ment Baget with more than 20% of the training data, or in catchment Source de la Touvre 

with more than 85% of the available data as training data), one could assume that the tracers 

share more information about the system dynamics than it could be found in the runoff data. 

Hence, the potential of tracer concentration prediction by runoff alone is limited to system 

behavior visible in the runoff data. Moreover, some dynamics should not become visible in 

the ML-based prediction as the information content of the runoff data was too low to explain 

all processes in detail. 

3.6 Validation of tracer concentration prediction 

As mentioned before, two different training strategies were applied: The univariate and the 

multivariate approach. In the univariate approach for each tracer a machine was trained. 

Contrary, in the multivariate approach one algorithm was fitted to predict both tracers as a 

multi output with the same algorithm. To use knowledge on the information content of the 

catchments, only as much training data was used where the continuous entropy of the runoff 

and the MI of tracers have equal levels. Both training strategies were compared due to their 

capability in prediction and, even more important, to show a direction of information flow 

between the tracers. As one can see in the box plot covering different time spans of runoff 

input data, no clear preference towards an algorithm could be stated. It is rather region de-

pendent as to which algorithm performed best as one can read from the mean concentration 

ratio 
Tc  (Fig. 19). In all four approaches, the box plot revealed that SO4

2- had a higher vari-

ance than NO3
- with the whiskers showing the deviation from the optimum of 1.0 in 

Tc .  

In contrast to the stream flow separation all investigated approaches delivered stable results. 

SO4
2- seemed to cause more problems in the prediction than NO3

-. Over all catchments and 

approaches NO3- was closer to the optimum of 1.0. Generally, one can see that the tracer 

concentration in some catchments can be predicted in a better way than in others: well per-

forming catchments were Fontaine de Vaucluse, Fontbelle, Source de Fontestorbes and 

Source du Lez. Of these catchments, Fontbelle could not be predicted by CART. In the other 

catchments no preference towards any algorithm could be observed.  

The prediction in catchment Baget tended to underestimate both tracer concentrations. Gen-

erally, the results in this catchment revealed a broad variance. Thus, the window length of 

runoff had a higher influence on the overall ML performance. Here, CART showed the best 

performance, especially considering the multivariate strategy with 
Tc values close to the op-

timum of 1.0. Apart from the SVM, Source du Lez showed the opposite behavior: The var-

iance of results was low, close to the optimum. 

Quite contrasting, the SO4
2- concentration in catchment Durzon was overestimated by factor 

3 while the NO3
- concentration was underestimated by factor 2. This contrary behavior was 

also observable in catchment Source de la Touvre. The choice of algorithm only influenced 
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the magnitude of this contrary behavior. 

While the multivariate strategy ameliorated the prediction results of NO3
- it deteriorated the 

prediction capabilities of SO4
2-. The SVM did not show a preference towards any of the 

different learning strategies. Contrary, a tendency got obvious in CART, ELM and ANN. 

This means that prediction of NO3
- could be improved by incorporating the other tracer and 

the prediction of SO4
2- cannot retrieve any useful information from that additional data. 
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Fig. 19: 
Tc of SVM, CART, ELM and ANN. The variability shows the performance according 

to the applied type of training data. While the most catchments show good results regardless 

of the applied machine with only slight variations in the influence of amount of training 

data. In some catchments both tracers cannot be predicted, like Baget, in other the predic-

tion of a single tracer was heavily biased, like SO4
2- in Source de la Touvre. In some cases 

the multivariate approach (NO, SO | Q) performs better than the univariate algorithm (NO 

| Q) and (SO| Q). 
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Next to the mean concentration ratio 
Tc , the RMSE was also an important performance 

metric for judging ML capabilities in tracer prediction (Fig. 20). The findings from the 

RMSE emphasized the results derived from the analysis of 
Tc . Again, catchment Baget 

showed the highest variability in the validation. Fontaine de Vaucluse, Fontbelle and Source 

de la Touvre scored low RMSE values over all four approaches. This performance metric 

underlined the findings from before. It is rather a catchment specific tendency and not a 

preference towards the specific algorithm that finally makes the choice towards a ML setup. 

Catchments that performed well with SVM for example, also performed well using ANN, 

ELM and CART.  

There were some exceptions to that rule: Source du Lez seemed to cause problems using a 

SVM. This underperformance was also visible in the CART application but to a lower degree 

and more interestingly limited to NO3
-. Fontaine de Vaucluse revealed a higher mean of 

RMSE and a higher variance in error using an ELM. Using CART, the multivariate strategy 

deteriorated the prediction performance, while using the other ML approaches the perfor-

mance delivered similar results. The catchments Durzon and Source du Lez showed opposite 

error behavior as before. The prediction of SO4
2- resulted in a lower error, while the predic-

tion of NO3
- was worse than for the other tracer. Here, the bias of the performance measure 

became obvious and highlighted the need for a comparative analysis of performance 

measures. Each performance measure added a bias to the result because any measure focus-

ses on different details. In future research, the different preferences of the ML approach 

might be used to regionalize karstic systems as the tendencies towards algorithms, the learn-

ing behavior and the relation between MI of tracers and continuous entropy of runoff might 

share distinct patterns of information that are yet hidden.  
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Fig. 20: RMSE of SVM, CART, ELM and ANN for univariate and multivariate algorithms. 

The variability shows influence of learning threshold on the development of RMSE in the 

catchments. The RMSE follows the results from 
Tc  showing that the error relates to the 

average tracer concentration, revealing that in some catchments tracers cannot be predicted 

like catchment Baget. The choice of the machine has only low influence on the error and 

depends on the region. 



Information-theory based criteria for data mining 

63 

 

The last performance measure to check in the process of validation was the accuracy (Acc) 

of the pair of tracers (Fig. 21). Like in the results before, no general preference towards any 

of the aforementioned ML algorithms became visible. It was merely a question of the catch-

ment whether the Acc was high or low. Over all catchments and approaches values of Acc > 

0.5 have been achieved which means that in more than 50% of the cases the relative ranking 

of predicted tracers was modelled correctly. Interestingly, the SVM in catchment Baget, pre-

viously with the highest variety of RMSE and 
Tc , scored the maximum of Acc > 0.8, with 

outliers of 1.0. But again, the variability was higher than in any other catchments. 

With the Acc analysis, the difference between the two strategies, uni- and multivariate, be-

came even more obvious. The most interesting catchments were Durzon and Source de la 

Touvre. Using the SVM in both catchments the multivariate strategy improved the overall 

Acc. In contrast, using CART the multivariate strategy massively deteriorated the perfor-

mance. Over all approaches it holds true that those catchments that show low variations in 

the other performance metrics also show low variations in prediction capability but do not 

reach similar heights as the performance catchments with a high variation. Overall, this anal-

ysis showed the need for a complementary prediction framework that allows to predict com-

binations of tracers with their specific strategy.  
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Fig. 21: Acc of tracer prediction defined as the correctly predicted relative ranking between 

both tracers. 
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3.6.1 Influence of window length on prediction capacity 

Keeping the aforementioned results from the individual performance measures in mind, the 

emphasized influence of window length on the prediction capacity, and the impact of the 

window length on the performance were investigated and discussed. As catchment Baget 

turned out to be an interesting catchment in terms of performance variance, the four ML 

application in this catchment were investigated on their window length dependency (Fig. 

22). One can see that very short window length of only ±1d around the tracer measurement 

lead to good results, especially for NO3
-. For SO4

2- long window ranges (> ±60) led to similar 

good results. This was coherent with the meaning assigned to both tracers, one for short-

term changes and fast components while the other one more or less focusses on long-term 

changes and slow phreatic evaporation processes. These temporal patterns were overlapping 

in the input data, hence could only be detected by the ML algorithm if the window size was 

adapted. Too long, or too short windows confused the ML algorithms in the search for a 

pattern. Erroneous results were caused by non-convergence or underfitting as one can see 

for SO4
2- predicted by ELM and ANN. Here, the performance got better the longer the input 

windows were. 

In contrast to the results from Baget, the window length showed different behavior for pre-

dicting the tracers in catchment Source de la Touvre (Fig. 23). Generally, SO4
2- was overes-

timated, apart from using an ELM. Contrasting to the assumptions that SO4
2- requires longer 

windows as it represents long-term variations of the system, the overestimation got worse 

the longer the window was. 

Consequently, for the application of ML for prediction of tracer concentrations, a combined 

strategy had to be developed. The strategy must contain a data-specific definition of training 

data. Even if the structure or the problem is similar and even if the input data is the same, 

the strategy on how to use the data in the ML approach has to be overthought and adapted 

to the specific problem. A future application of the window length investigation might be 

the hypothesis test whether the tracer can be linked of assumed natural processes with a 

defined time span. Here, the mutual information between tracer and process information can 

be analyzed and links to the conceptual model can be established. Moreover, a data-driven 

regionalization of karstic catchments can be conducted. 
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Fig. 22: Dependency of chosen window length on 
Tc at catchment Baget. The different pre-

ferred window length for good performance in tracer concentration prediction underlines 

the different meanings assigned to the tracers. SO4
2-  can be predicted in better way the 

longer the input data window is, while NO3-- reaches the best performance values using 

small windows 



Information-theory based criteria for data mining 

67 

 

 

Fig. 23: Influence of window length on performance of 
Tc  results in catchment Source de la 

Touvre. SO4
2- is generally overestimated and quite surprisingly worsens the longer the win-

dow of input data is. 

3.6.2 Meaning of entropy for tracer prediction 

Comparing the entropy, the MI and the results of the ML predictions of tracer concentrations, 

one can remark a certain pattern. Catchments, like Baget, that had a fast rise of MI in contrast 

to a stable, low continuous entropy showed a greater variability of results and a heavier de-

pendency on the appropriate window choice (Fig. 18, Fig. 19, Fig. 20, Fig. 22). The higher 
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the information content, the higher the possibility to achieve a good Acc as well (Fig. 21). 

As there was no clear tendency towards any algorithm, the No-Free-Lunch-Theorem has 

been proven in practice: The choice of the algorithm is a matter of both, the problem and the 

data. Apparently, the prediction of tracer signatures in karstic environments depends on the 

structure and the information content of the data. High entropy data sets with only few, but 

unique structures, like from Baget may deliver more variable results, whereas data sets from 

catchments with a lower information content like Source de la Touvre show less variable 

results, but are furthermore limited to lower possibilities for prediction.  

This became also visible in the influence of the window length. High-entropy data sets 

showed a dependency between the results on the window length as patterns in data may 

overlap for short-term processes or may be confused in terms of slow long-term processes 

(Fig. 22). Even though the term of high-entropy might be misleading in the context of similar 

final levels of information in all catchments (Fig. 18), the development of entropy is differ-

ent, which became visible in the results as mentioned before. Consequently, one can state 

that the 24 tracer measurements in Baget capture more information than the 300 in Source 

du Lez. Apparently, similar hydrological situations were measured, that do not create a 

strong pattern in both tracers. From this definition, catchments Baget and Source de Fontes-

torbes (43 tracer measurements) can be marked as information-rich data sets (Tab. 2). To a 

certain level also the data from Durzon can be counted as information-rich, although the 

information content > 200 bit seems to be erroneous as it just peaked and did not reach a 

stable level. 

3.6.3 Interpolation quality of ML approaches 

One of the major improvements of a trained ML algorithm is the ability to interpolate com-

plete time series of tracer concentrations. Even if the amount of tracer measurements is lim-

ited, a ML approach should be able to guess the tracer concentration based on the collected 

experience. Although it is not possible to create new extreme constellations, the known range 

of tracer concentrations should be reproducible as long as the pattern of their origin is de-

tectable in the training data. 

For catchment Fontbelle, an interpolation was conducted to create a continuous time series 

of tracer measurements by an ANN trained with 20% of available events (drawn randomly). 

One can see that the interpolated SO4
2- concentration is limited using the univariate strategy 

(Fig. 24). Using the multivariate strategy (multiple tracers predicted with one machine) the 

prediction reached a variability similar to the measured values. In total, it seems as if the 

univariate strategy predicted a damped time series, whereas the multivariate strategy cap-

tured the evolution of the actual measurement better.  

The prediction of NO3
- on the other hand showed only marginal differences to each other. 

The multivariate strategy was more variable than the univariate strategy. This was compara-

ble to the performance measures where both strategies deliver similar results (Fig. 19, Fig. 

20).  
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As an explicit choice of the ML approach was not possible due to the qualitative comparison, 

expert knowledge and qualitative comparison of interpolated time series could be used to 

judge the goodness of fit for each interpolated time series. Although the qualitative compar-

ison seemed to be less valuable than the quantitative analysis, it helped to determine the 

performance of the ML approaches and the appropriateness of fit. One can conclude that the 

information content of the measured runoff reflects the interpolation quality of the ML ap-

proaches.  

  

 

Fig. 24: Interpolated time series of NO3- and SO4
2-. As predicting ML algorithm an ANN 

trained with 20% of the available tracer measurements was taken. The multivariate learn-

ing (mANN) strategy allows an interpolation of SO4
2- closer to the range of measured data 

  

3.7 Concluding remarks on entropy-based data mining  

In this case study, the application of entropy and information-theory based applications of 

data mining in the context of ML-based interpolation methods was discussed. With the con-

tinuous entropy and the MI the information structure of tracer measurements and complete 

time series of runoff could be investigated. Moreover, hidden links like the information flow 

between NO3
- and SO4

2- were revealed. 

The gap between the information in the runoff data from the Eaufrance database and the 

available pairs of tracer measurements explained the limited interpolation ability. The point 

where the continuous information from runoff and the MI of tracer diverged, the runoff was 

not able to describe the variability of the tracer measurements and thereby limited the ability 
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to describe the complete system. Although the information content is a fuzzy measure that 

is hard to link to physical measures, the knowledge about the information content in hydro-

logical data is crucial for modelling purposes. For the interpretability of ML-derived results, 

the investigation of the information content as a part of data mining and data processing is a 

further step forward as it offers a quantitative measure for the limits of the prediction capa-

bilities that the trained algorithm. 

The window size of the input data confirmed the thesis on the represented processes. So, this 

application could be of use to confirm process hypothesis and further strengthen the inter-

pretation of tracer-based methods. Here, the need for complementary approaches in ML set-

ups is further underlined by the information flow and the demand for different learning strat-

egies. 

3.8 Conclusion of ML-enhanced approaches in hydrology 

As a conclusion from the data-driven side of the modelling spectrum (Fig. 3), one can say 

that ML approaches help to investigate catchments and their internal structure purely based 

on the available data. Black-box approaches help to develop a deeper understanding of sys-

tems behavior on integral measurements, like runoff.  

As shown in Sec. 2.3 ML approaches could be used to facilitate pattern recognition in data, 

and replicate expert knowledge without exact mathematical definition. Hence, expert 

knowledge becomes transferable at low costs. Following the No-Free-Lunch-theorem (Sec. 

2.2) it was explained, why different approaches have to be considered: As the a-priori choice 

is often impossible, several different approaches have to be tested. All algorithms should 

eventually solve the problem, but the amount of work, in this case data, is different. For the 

flood event separation a preference towards SVM and ELM was shown. Less than 10 runoff 

events are needed to score sufficient performance measures even when the algorithm is ap-

plied to a large data base (Sec. 2.4). This feature even holds true for increasing data sets 

which means that some key requirements of Big Data are achieved: volume and velocity!  

The case studies revealed that some structures might not be appropriate for the specified 

problem or require further adaption (see ANN in Sec. 2.4.1 & 2.4.2). So, it is not automati-

cally said that ANN are not able to separate flood events, but, and this is the major point, 

other algorithms can perform at least equally well with less work needed.  

Due to the low number of required training data for stable results, one can assume that it is 

not the total number of events but the quality of information in the data is the main trigger 

for a successful ML application. A measure for information quality, the Shannon entropy, 

was presented in Sec. 3.2.  

To investigate the possible use of the entropy model in ML approaches in hydrological ap-

plications, the prediction of tracer signatures in karstic environments by runoff data was 

tested (Sec. 3.1). For this type of measurement a ML-based interpolation method would 
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eliminate certain limitations of tracer-based methods. Due to high costs and low reproduci-

bility of tracer measurements, continuous time series of tracer measurements are rare. So, 

the need for an elaborated interpolation method to fill the gaps based on known system dy-

namics (like runoff) would be of interested. The analysis reveals that runoff has a lower 

information content than the here presented pair of tracers share among each other. Further-

more, the total number of tracer measurements has a negative influence on the prediction 

capabilities. Especially in catchments with high numbers of available measurements more 

training data is required to include information-rich tracer combinations. As soon as the 

catchment is either dynamic or the tracer measurements capture these dynamics by chance, 

the prediction applicability is limited. Nevertheless, more than 50% of the relative ranking 

can be predicted which is, for applications of tracer measurements in some model calibration 

strategies, an advantage.  

Thanks to the test of uni- and multivariate learning ML strategies some light was shed on 

the direction of information flow and the interdependence of information in data. SO4
2- can 

be predicted more accurately by multivariate ML approaches than NO3
-. The shared infor-

mation helps to predict one tracer whereas it deteriorates the prediction performance of the 

other. Thus, one can conclude that for this tracer combination, a complementary modelling 

framework would be an appropriate toolset. A univariate ML approach would predict NO3- 

while the multivariate approach predict SO4
2-. A further ramification of the setup is not an-

alyzed but different lengths of the input windows might also improve the performance of the 

prediction. This analysis of the influence of window length might be used for future region-

alizations of karstic catchments where geomorphological classification schemes reach their 

limits due to complex subterraneous structures.  

From these findings, a ML framework for the application in hydrology can be formulated 

comprising the choice of the approach and the selection of data. The framework has six 

columns that all have to be answered before considering a ML approach in hydrology. 

1. Define the question to the data. Provide a defined truth to compare to. 

2. Analyze the information content of the data. Do in- and output data have the same 

information content? 

3. Choose as much data as needed but at least enough for possible training in order to 

avoid confusion of the algorithm evoked by the decreased information/noise ratio. 

4. Choose a set of ML approaches and test those against performance metrics that suit 

the problem. 

5. Perform a qualitative and quantitative analysis of the results. 

ML based approaches are interesting either for large data sets that would require heavy work-

load to analyze manually or for problems with a complex and yet unknown structure. This 

qualifies for some of the requirements posed to big data: Velocity and Variability. Any newly 

incoming set of data can be analyzed and processed according to the training data.  

 Nevertheless, this study shows the need for expert knowledge in terms of approach selection 
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and the pre-processing of the input data. Especially for the qualitative analysis and interpre-

tation of results expert knowledge and the ability to judge results for a specific question is 

of interest. 
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4 Emerging systems modelling by Agent-based models 

The aforementioned black-box approaches like ML delivered promising results, but apart 

from CART none of the approaches was interpretable by the researcher. To overcome the 

explaining limits of black-box, approaches like the highly specialized genetic programming 

(GP) can be applied (e.g. Wang, 1991; Parasuraman et al., 2007). Alternatively, the mo-

delling scheme shifts to white-box modelling approaches. White-box approaches share the 

characteristic that conceptual knowledge of the researcher is taken into account. The 

knowledge-driven characteristics are achieved by the definition of rule sets for the model 

component. They are often applied if the general rules in a system are known but the exact 

interactions are either hard to describe or unknown (Bruch and Atwell, 2015). In the past 

decade social sciences, psychology and behavioral ecology developed numerous approaches 

to model systems that consist of patterns where the rules that lead to the pattern are not 

completely known. By adding more and more rules, the interaction of model components 

and the rules can be examined. Often the absolute performance is not of interest, but the 

pattern created by the model is in the focus of research. To model these systems from this 

bottom-up perspective, expert knowledge has to be utilized. 

In order to incorporate expert-knowledge into the process of data analysis, the focus has to 

be shifted from black-box applications to knowledge-driven approaches like agent-based 

computing. From a theoretical perspective, agent-based computing is often classified as soft 

computing (Bruch and Atwell, 2015). In those applications the quantitative information steps 

back behind the qualitative information which has its origin in the fuzzy nature of soft com-

puting approaches. Soft computing approaches utilize knowledge of a system’s behavior 

without the exact mathematical definition. They rely heavily on logical definitions and the 

connections with if…then… statements (Sivanandam, 2011). These logical conditions with 

thresholds are also the fundament of agent-based modelling which is a recently developed 

common rule-driven modelling approach for complex interaction models. 

4.1 Fundamentals of Agent-based models 

To model emerging system behavior of complex interacting systems, often agent-based 

models are applied (ABM). Agents are encapsulated, autonomous software units (Gunkel, 

2005; Macal and North, 2010). Each agent follows a strategy to achieve a goal (Jennings, 

2000). Therefore, certain rules are assigned how to behave in their specified environment. 

These rules represent the boundary conditions of the models. As the agents have a goal and 

a strategy, the actions allowing to achieve a goal have to be defined beforehand (Macal and 
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North, 2010; Lempert, 2002; North, 2014). The agent also has certain attributes that consti-

tute its internal states and may trigger certain behavioral patterns. 

Through sensors the agent is able to sense the environment and to communicate with other 

agents (Fig. 25). The agents do not only have sensors and actors for their environment but 

also for their neighborhood (Blaschke et al., 2013; Hofmann, 2017; Hofmann et al., 2016). 

The definition of the environment remains complex and has to be discussed in detail with 

the specific problem in mind. ABM consist of a magnitude of autonomous agents that build 

the entire model. By this, the interactions among the agents create a dynamic within the 

model that cannot be modelled by traditional methods (van Parunak et al., 1998) and is there-

fore of great interest to model problems that have a highly dynamic internal composition of 

states (Mewes and Schumann, 2018b).  

The multitude of autonomous agents also creates new problems that are out of focus of con-

ceptual models. Here, the scheduling is harder to determine as there is no obvious order of 

agent action. A detailed problem-specific scheduling analysis is discussed in Sec 4.3.3. 

 

Fig. 25: Scheme of an autonomous software agent with sensors and actors, here referred as 

effector. After: Hofmann et al. (2016) 

An ABM consists of the experiment describing the modelled scenario, in the case study a 

soil column filled with a certain type of soil, and the unifying global agent that collects all 

parameters for the complete model as time step length and ending condition (Fig. 26). In 

ABM time steps are called ticks, because like a clock at any tick the model states have to be 

reevaluated and recalculated.   

The actual agents may be of static nature, for example Meta agents act as representation 

units, or are dynamic. The dynamic agents alter their shape, their size and their internal state 

(Mewes and Schumann, 2018a). They represent the core of any emerging ABM and their 

actions and rules are the fundament of each agent-based model. In contrast to cellular au-

tomata, the agents have alternating positions and shapes (Shao et al., 2015; Parsons and Fon-

stad, 2007; Macal and North, 2010). By inter- and intra-class communication information 

flows in this model. By this communication structure among autonomous software agents 
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the emerging character of ABM evolves. These connections may reveal strengths and down-

sides of theoretical found relationships in a complex natural system.  

ABMs are complex computer programs that manage a plethora of objects that decide indi-

vidually what actions to take. Hence, a software environment has to be chosen that allows 

the organization of multiple objects (Abar et al., 2017). The choice fell on GIS Agent-base 

modelling architecture (GAMA), an open-source ABM framework based on Java with the 

ability to be extended through hooks and add-ins (Taillandier et al., 2012; Taillandier et al., 

2014). GAMA already provides tools and routines to cover spatial data, either as vector or 

raster objects. This high number of individual software objects increases the computational 

demand of ABM in contrast to equation-based modelling. Therefore, approaches for com-

putation on graphical processing units (GPU) were developed to reduce the computational 

demand on the main central processing unit (Crooks et al., 2008; Wang et al., 2013a). To get 

a surplus of performance, the model steps have to be cut into single pieces. Every sub-step 

again is allocated to the GPU or a multithreaded central processing unit. Thereby, a high 

number of calculations, like the determination of agent states, is parallelized and thus the 

computational time of the model decreased. An improvement of performance is only 

achieved when the sub-steps are of the same nature and require only a low transfer of data 

via the system’s bus unit. Else, loading times from the main working storage to the local 

graphical storage would take longer, than the GPU calculations save on computational time 

by calculating faster (Aaby et al., 2010). 

In contrast to traditional hydrological models and classification approaches, the validation 

of ABMs requires different techniques and proxies to make results comparable. As the 

agents represent different types of actors in a system, the validation strategy has to be adapted 

to the specific model use. Either pattern comparison can be used as a validation approach 

which requires a measure of similarity that can be applied to the patterns. Alternatively, a 

proxy value can be installed to compare the results with those from a traditional modelling 

approach. If the proxy value is chosen as a reference one has to keep in mind that the choice 

of the proxy value again is a bias and needs to be discussed. 

In terms of big data and the related analysis approaches, ABM covers the variability of data, 

and is also able to detect and visualize the changing relations among the agents to increase 

the information gain from the data. Computational time is the limiting factor when analyzing 

data with a high update velocity but the aforementioned parallelization methods will improve 

computational time increasing the applicability of ABM in big data contexts. 
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Fig. 26: Conceptual scheme of an ABM comprising the global agent, the experiment and the 

actual agents. 

4.2 Applications of ABM in hydrology and water resource management 

Originating from social sciences and behavioral modelling (Cernuzzi et al., 2005; Centaro-

wicz et al., 2010; Kofler et al., 2014; Troy et al., 2015; van der Vaart et al., 2016), first 

applications in physical-based hydrological modelling and water resource managements ap-

peared in the current decade (Reaney, 2008; Rakotoarisoa et al., 2014; Servat, 2000; Shao et 

al., 2015; Wang et al., 2013a; Folino et al., 2006; Grashey-Jansen and Timpf, 2010). Three 

of those applications do not count as ABM, as they merely rely on cellular automata (Folino 

et al., 2006; Parsons and Fonstad, 2007; Shao et al., 2015) while the other apply agent-based 
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modelling. Yet, the studies lack of a general strategy in using ABM to answer physical ques-

tions in hydrology and water resource management. 

ABM applications in water resource management often represent decision makers in policy 

modelling. The socio-economic part is modelled by agents with a conceptional hydrological 

model in the background (Bithell and Brasington, 2009; Troy et al., 2015; Mashhadi Ali et 

al., 2017; O’Connell, 2017). For socio-economic agents rules are derived from sociological 

system understandings. Thus, these coupled models are more fitted to scenario-based mod-

els, where validation is hard and sometimes impossible. ABMs that model hydrological sys-

tems are sparse in literature and mostly site-specific models (Servat, 2000; Reaney, 2008; 

Rakotoarisoa et al., 2014). In these studies the rules and boundary conditions are derived 

from well-known physical relationships. Hence, these models are able to be validated as long 

as a proxy is used that translates the agents into volume or fluxes. Like in different scientific 

fields, hydrological ABMs are only rarely transferred to different yet similar problems. This 

might be due to the bottom-up style of this modelling technique that is extremely linked to 

the problem, but also linked with a lack of a framework for ABMs in hydrology.  

The lack of a general modelling framework and a conceptual scheme might have hindered 

the rise of the modelling technique in the past. In this study, a fundamental idea is proposed 

for the usage of this modelling technique as well in hydrology as in water resource manage-

ment. As an initial framework for the application of ABM in physical hydrology, a frame-

work for soil water movement and soil interactions is developed, called Integrated Platform 

for Agent-based modelling (IPA) which is published by Mewes and Schumann (2018b).  

4.3 Framework development of an ABM for soil water movement and in-soil 

interactions 

Following the requirements of an ABM framework (Sec. 4.1), the class of the dynamic 

agents, the class of static agents and the global agent, that controls the modelling experiment 

as a meta agent, are introduced (North, 2014; Macal and North, 2010). In order to set up an 

ABM for soil water modelling, some principal thoughts on the nature of software agents, 

their interaction with their environment and eventually the constitution of the model envi-

ronment have to be given (Crooks et al., 2008). Software agents are encapsulated entities 

with a defined boundary and attributes, that follow rules to fulfil their goal (Macal and North, 

2010; Blaschke et al., 2013). Agents interact with their environment through actors and in-

terpret their environment through sensors, whose rules of interaction have to be defined a-

priori by the modelling expert (Hofmann et al., 2015; Macal and North, 2010). The environ-

ment acts in form of a defined number of static agents that comprise all hydrologic agents 

within their spatial and temporal extent. All actions and interactions are coupled and lead to 

emergent system dynamics: Agent A decided to perform action I, which hinders Agent B to 

perform action II but leads B to perform action III and eventually force the environmental 

layer agent to influence Agent A’s future decision. The IPA framework handles all agent 
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classes, the general composition of the modelled system and global model behavior and is 

designed to manage agents in a dynamic way to allow the composition of large scale ABM 

models through the underlying GAMA architecture in headless mode to save computational 

time ( Taillandier et al., 2012; Boulaire et al., 2015).  

In the IPA framework, the global agent manages all static agents (the layers) and dynamic 

agents (the hydrologic agents).The static agents get information from the hydrologic agents, 

e.g. how much water is already stored within the layer. Conversely, the layers share infor-

mation on physical properties to the hydrologic agents. They require this information to cal-

culate their movement speed based on the environmental parameters. Through the 

knowledge about the hydrologic agents inside the layer, the boundary conditions for each 

layer are checked. In contrast to the aforementioned inter-class communication between 

layer and agents, the intra-class communication of hydrologic agents is crucial for the deci-

sion of movement. In dilemma situations, e.g. in case that the target pore space is already 

covered, the intra-class communication is used to solve that dilemma situation by negotiating 

the different states of the hydrologic agent (Fig. 26).  

In contrast to classical, equation-based modelling approaches, the amount of parameters for 

tuning is smaller (van Parunak et al., 1998) but the amount of computational time is higher, 

which results in a demand for parallelized computation either on GPUs or on high perfor-

mance systems (Wang et al., 2013b). As mentioned before, the analysis of ABM outcome 

differs from the analysis of conceptual storage based models because an integral measure of 

e.g. runoff is rarely a measure. Neither is the fitting of a measurand the target of the ABM 

but to replicate the pattern that leads to the measurand. So, the pattern-oriented analysis is to 

prefer, especially in case of spatially-distributed ABM (Grimm et al., 2005).  

4.3.1 Dynamic agents: hydrologic agents   

 Class description of hydrologic agent 

Hydrologic agents are carriers of a constant amount of water 𝑤 that defines their mass (rep-

resented as grey circles in Fig. 27). All agents carry the same amount of water, but their 

spatial extent is different because of changing environmental characteristics. Here, the spa-

tial extent of the hydrologic agents is determined by a circle with radius 𝑟 of an agent A that 

is influenced by the surrounding porosity ФE. So, the size of the hydrologic agent may 

change during its path through the soil column although its mass remains the same, due to a 

change in the porosity. For future applications the density ρ of the carried water is also in-

cluded (but here set to 1).  
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The influence 𝐼ℎ𝐴,𝐿 of each hydrologic agent on the static layer agents can be quantified by 

the radial area that a hydrologic agent covers in relation to the complete area of a layer of 

the hydrologic agent (4.2): 
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Here, 𝐴ℎ𝐴,𝐿 is the area of layer L covered by Agent hA, and 𝐴ℎ𝐴 is the area of the hydrologic 

agent hA. This influence can reach a maximum of 1 if the hydrologic agent covers only one 

layer, or smaller splits with a sum of 1 per agent, if it covers multiple layers. This influence 

is used to calculate the saturation of layers and the surrounding porosity Ф𝐸  of hydrologic 

agents in the next time step. The saturation of layers 𝑆𝑎𝑡𝐿 is calculated by the contributed 

amount of water 𝑤ℎ𝐴 of the agents located within the layer (ℎ𝐴,0  … ℎ𝐴,𝑁 ) weighted by the 

influence 𝐼ℎ𝐴 and the total pore volume of the layer V.  

 

,

, ,,0
 

hA N

hA i hA ihA

L

I w
Sat

V



  (4.3) 

In order to analyze the possible future location of the agent, a cone-shaped view shed is 

constructed (light grey cones in Fig. 27). The view shed has a larger extent than the area of 

influence, although its length also depends on the radius 𝑟. Moreover, the saturated percola-

tion speed of the agent in its environment given by the hydraulic conductivity ks and the 

chosen model time step Δ𝑡 determine the view shed. This can be seen as a tool for numerical 

integration in the discretized model environment (Servat, 2000), as it shows the maximum 

distance the agent can travel within the next time step. The cone is constructed with an angle 

of φ =45 ° and the maximum distance d in Eq. (4.4) and saturated hydraulic conductivity 

denoted as ks.  

     Δ  d r ks t     (4.4) 

The calculation of the view shed is influenced by Darcy’s law incorporating the hydraulic 

conductivity. Hence, ks represents the possible step width and the time step of the model. As 

the agent has a spatial extent, the radius has to be considered as well. The angle φ is a pa-

rameter to include the variability of pathfinding due to different grain sizes in the soil struc-

ture. This model setup consist of an 1D soil column and the gradient is limited to one direc-

tion. The angle as well is limited to 45° in direction of the gravitational gradient. This angle 

is chosen because in the 1D case this angle represents the possible range of direction of 

movement without a substantially changed gradient. The direction and the speed of move-

ment define the pathfinding algorithm of IPA. 
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Fig. 27: IPA scheme with two layers with decreasing porosity per depth and two hydrologic 

agents. 

The pathfinding is gradient-based and respects the entity of the hydrologic agents. If the 

available pore space in the target area is covered, no further movement is allowed and thus 

the agent is hindered from moving there. If that is the case, the agent tries to find a different 

target that lies within its direction of movement. Within an angle of 90° the gradient remains 

intact and thus allows the agent to take an indirect, hence longer way that reduces the dis-

tance to pass. 

 Rule set for hydrologic agents 

The hydrologic agent has to decide whether to move or not to move. Once it has decided 

whether it shall move, the direction of movement has to be considered. In the case study, the 

rules of movement are defined by physical laws of soil water movement, which can be seen 

as a trade-off between the vertical forces of gravity ψG and matrix potential ψM that holds 

water against gravity. These forces are known as the driving potentials (van Genuchten, 

1980). The osmotic potential ψO is neglected, which reduces the decision of each agent for 

movement to: 

 
H  =  M G     (4.5) 
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𝜓𝐻 equalling 0 means no downward movement with the potential gradient takes place, 

whereas 𝜓𝐻 > 0 leads to capillary rise. 𝜓𝐻 < 0 results in further deeper percolation of the 

agent with the speed 𝑘 of the agent determined by a soil depended retention curve (van 

Genuchten, 1980; DBG Arbeitsgruppe Kennwerte des Bodengefüges, 2009). The speed 𝑘 is 

the actual hydraulic conductivity that is higher than the saturated hydraulic conductivity 𝑘𝑠. 

In case of an infiltration front moving through a wet soil, the matrix potential 𝜓𝑀 can also 

be in the same sign with the gravitational potential 𝜓𝐺 . In case that the future location of the 

agent at 𝑡𝑖 +  Δ𝑡 is already occupied, the agent tries to find another route following its gradient 

of potential. Thus the running order, e.g. schedule of hydrologic agents is of importance, 

which is discussed later in Sec. 4.3.3. If no other route is possible, the particular agent’s 

movement is suspended for this time step, or tick as it is called in agent-based modelling. 

The speed of the movement is given by the 𝑘-value of the surrounding area, which itself 

depends on the predominant moisture of the environment which is calculated by van 

Genuchten’s model (van Genuchten, 1980). This model links soil moisture, the predominant 

potentials 𝜓𝐻, 𝜓𝑀 and 𝜓𝐺  with the saturated hydraulic conductivity ks and the hydraulic 

conductivity k which is higher under saturated conditions. The physical soil properties used 

to calculate van Genuchten’s model (VG) are given in Tab. 15 in the appendix A. 

4.3.2 Static agents: Layer agents 

 Class description of layer agent 

As stated before, the layers act as static observing agents that survey all dynamic hydrologic 

agents that belong to their layer (Fig. 27). To each static layer agent a corresponding rectan-

gular area is assigned, later on referenced as the layer. So, the global environment is discre-

tized according to the available data on porosity and layer extents. The total volume of the 

modelled system is subdivided into a number of single layers. The corresponding soil mois-

ture per layer is calculated by the sum of internal agents’ carried water. As the detection of 

hydrologic affiliation to a specific layer is vulnerable to numerical artefacts from abrupt 

changes, the calculated soil moisture is smoothed by a univariate spline with a fifth degree. 

This spline was found to fit the characteristics of soil water content well, but still needs 

refinement as shown in the detailed analyses Sec. 4.4.5. Each layer controls whether the 

movement of agents is possible, such that problematic situations, e.g. over-saturation of lay-

ers, are avoided. With this the layer is like an internal boundary condition for the decision 

making process of the hydrologic agents. The interaction between hydrologic agents and the 

layer agents is bidirectional: Not only corresponding amounts of water carried by hydrologic 

agents alter layer processes but also the alteration of soil moisture content is coupled with 

future agent’s decision due to the influence of the soil retention curve on speed and direction 

of movement (Grashey-Jansen and Timpf, 2010).  

 Rule set for layer agents 

Static layer agents have various duties: they create hydrologic agents, monitor the soil mois-

ture and oversee that all hydrologic agents act within the boundary conditions. For creation 
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of the hydrologic agents, an infiltration model has to be used. This can be a potential-based 

agent model, or as in this case a Green-Ampt (GA) approach of infiltration leading to the 

general assumption of a continuous movement of the infiltration front in the matrix. So, the 

infiltration in the upmost layer represents the upper boundary condition of the model. In this 

framework an environmental layer can be assigned with a GA infiltration which offers an 

approximation of GA fairly easy to compute (Ali et al., 2016).  

Ali et al. (2016) presented an approximation to Green-Ampt where 𝐹(𝑡) represents the cu-

mulative infiltration, 𝑆 the sorption parameter defined by Ali et al. (2016), 𝑘𝑠 the saturated 

percolation velocity depending on the soil and 𝑡∗ is a dimensionless infiltration time Eq. 

(4.6).  
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  (4.6) 

The cumulative infiltration F(t) is transformed into an actual infiltration rate f(t) which sets 

the number of hydrologic agents at a normally distributed random starting position in the up 

most layer Eq. (4.7). For the calculation of the infiltration into the soil column, the parame-

ters given in Tab. 15 in the appendix are used to calculate the Green-Ampt infiltration in 

each time step. 

       1 /Δtf t F t F t     (4.7) 

The mass of the newly generated agents is fixed at a certain amount. This knowledge is of 

importance once IPA is able to run on either graphic card accelerated systems or on parallel 

computing platforms like cloud-based services, because memory allocation and data stream-

ing between processing units becomes the bottleneck of performance and have to be formal-

ized beforehand (S. Rybacki et al., 2009; Kofler et al., 2014). In contrast to the upper bound-

ary of the model within the IPA framework, the lower boundary is defined by an outflow 

rate that relies on the 𝑘𝑠 value of the lowest layer. Once the centroid of the agent, given as 

the center of the circular shaped agent, has left the system, it dies and the carried amount of 

water accounts as outflow. 

In IPA all layers or agents of the environment collect information about processes that take 

place within their extent and along their boundaries. In order to assign a weight depending 

on the distance of the hydrologic agents to the center of the layer, a density kernel approach 
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is applied to assign weights to each agent to smooth results and reduce numerical and graph-

ical artefacts for the integration of all agent movements that are highly variable and are de-

pendent on the simulated situation.  

4.3.3 Global agent setup 

Creating ABMs requires a planned scheme of the running order of processes, actions and 

actors (e.g. hydrologic agents and global agents) of the model. Thus, the unifying global 

agent, that combines model parameters, hydrologic agents and the observing layer agents, 

acts as the controlling unit of the whole model (Macal and North, 2010). This global agent 

controls the time and acts as an organizing agent, because it monitors the initialization of the 

model (at the beginning of the simulation), and asks hydrologic agents to register their layer 

belonging. Moreover, the global agent is able to force the observing agents to recalculate 

their state in terms of their current storage. 

4.3.4 Model framework for comparison: cmf  

For comparison purpose, a single column model , created in the cmf framework (Kraft et al., 

2011) has been used. cmf was chosen because it offers an open framework for spatially-

distributed process-based modelling (like solving the Richard’s equation for unsaturated 

flow). Moreover, the general structure of cmf allows a spatial discretization and spatial mod-

elling and can thus be seen as a possible benchmark for a hydrological agent-based model-

ling framework like IPA. 

In the presented model setup, a single cmf cell, subdivided into ten layers with a depth of 

10cm each, was used. The uppermost layer was connected by a GA infiltration process and 

a constant head of water available for infiltration upon surface. Transportation of water 

within the cmf soil column was calculated using the Richards equation for unsaturated flow 

and Darcy’s law for saturated flow. The soil retention curve was modelled with the help of 

the van-Genuchten (VG) model. The outlet of the soil column was defined as a free boundary 

where water can exfiltrate from the system. 

4.3.5 Model setup and parametrization of environment 

For comparison of the general ability of the usage of IPA for the simulation of soil water 

movements, a simple synthetic scenario was created. A soil column with a height and a width 

of 1m (complete volume of 1 m³) was used as the model setup. The soil column was divided 

into 10 single layers with a constant thickness of 10 cm. This column was filled with a ho-

mogenous sand soil (mS) with soil parameters given in Tab. 15 in the appendix A. All pa-

rameters applied in the VG model influence the calculation of k by the potential gradient and 

the saturation of the environment, whereas the GA parameters only affect the upper bound-

ary condition. The chosen time step was 1h in order to reduce computational time, keeping 

in mind that a time step this long is vulnerable to numerical integration problems. By the 

reduction of time step length, less steps for the hydrologic agents had to be calculated. All 
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layers were equally pre-filled with soil water, resulting in a layer specific soil moisture θ of 

20 % of available pore space. Although being different in their internal structure, the IPA 

model and the cmf model (Kraft et al., 2011) shared exactly the same model setup and par-

ametrization. Infiltration was fed by an initial head of water of 1.0 m at the surface. The 

number of ticks was set to 90 which means that both models calculated 90 h or 3.75 days of 

infiltration and soil water movement. The model time was set long enough (3.75 days) to 

allow a deeper movement of the infiltration front through a set of layers, without the head of 

water on the surface becoming 0. In both models, the time step is chosen as 1h to increase 

comparability of results and remains constant in all figures and applications.  

4.3.6 Performance measures 

To estimate the quality of IPA representation of the water movement within the soil column, 

a suitable measure of performance had to be found. Both models deliver time series of their 

current states, the layer specific soil moisture θ. Here, the choice to measure the performance 

of IPA fell on the r² value. 
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Where on the one hand ∑ (�̂�𝑖 − �̅�)2𝑛
𝑖=1  denotes the explained variation through the model 

and ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1  on the other hand depicts the total variation, and n as the number of given 

samples in both models. A value of r² = 1 would show a perfect model fit, whereas an r² = 0 

would mean that no variation is explained through the new model. This measure of determi-

nation, or in this case, measure of error helps to quantify the relation between known model 

structure and new modelling approach without the need to specify the differences in model 

structure in detail and is suitable measure of performance for model comparison.  

4.4 Comparison results of IPA and cmf 

To judge IPAs general modelling capabilities, the synthetic experiments were compared for 

both model types. As said before, cmf was considered as the true estimate. Both models 

showed no numerical errors over the simulation. The volume error of both models in the end 

with values of about 1%, which are considered neglectable. With a runtime of 1.1 min on an 

i5 with 2.2 GHz, 8GB RAM IPA computed only slightly slower than the numerical cmf 

model that needed about 30s on the same setup. Running IPA in headless mode without 

graphical output, the computational time was reduced to 48s. Further reduction of computa-

tional time could be archived by an outsourcing of the pathfinding to the graphical compu-

tation unit.   
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4.4.1 Experiment: homogenous soil column 

Comparing both model results, it became obvious that results were not identical, yet the 

dynamics were similar (Fig. 28). The development of soil moisture in the layers followed 

the same pattern. Saturation reached a similar level for the first three layers, while the veloc-

ity of saturation was different in IPA from the cmf results. Layer 1 did not saturate as fast as 

in cmf, but movement from Layer 1 to Layer 2 started earlier in IPA. In cmf, soil water 

movement from the uppermost layer to the next lower layer started after approximately 7 h 

while the agent-based model triggered movement of hydrologic agents immediately after the 

first hour of simulation. After 70 h both models showed saturation in the first layer, so both 

models reached the same final stable state. In both models the layers were nearly completely 

saturated at a soil moisture of about 32.8%. The transport from Layer 2 to Layer 3 started in 

both models 21h after the beginning of the simulation. Meanwhile, cmf showed a numeri-

cally smoother behavior than IPA, while the general system behavior is similar as one can 

see it in the variation of soil moisture in all layers in IPA, although some numerical oscilla-

tions in the soil moisture of Layer 2 became visible. 

 

Fig. 28: Comparison of soil moisture development of the upmost three layers with a homoge-

nous soil in the column. 

To express the accordance between IPA and cmf for this run, the corresponding r² value was 

used. Here the mean r² value of the upper three layer scored r² = 0.80. The standard deviation 

of both models is slightly different 0.039 % (cmf) to 0.045 % (IPA) while the mean values 
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of soil moisture were the same (Tab. 16 in the appendix A). 

4.4.2 Experiment: soil column with heterogeneous soil 

As stated before, the synthetic case was extended to a more complex situation of two heter-

ogeneous soil types. In order to show the general ability of IPA to model complex systems, 

the 1D soil column was packed with two different soils leading to the problem of a boundary 

between two different types of soils with different physical properties. The geometry and the 

discretization of the grid for the cmf-model remained the same, but the topmost layer consists 

of Su2 (a weakly silty sand) instead of mS. Su2 was chosen because although it has different 

physical characteristics, it is still a relative to the original mS soil with a lower share of sand 

but a higher share of clay. This change of soil type affects highly the process of infiltration 

and the transition between Layer 1 and Layer 2. None of the other layers was changed, so 

the ability of IPA to simulate with its pathfinding algorithm (as introduced in Sec. 4.3.1.1) 

and its suspension of movement approach was tested in regard to the added layer transition 

between Su2 and mS. 

 

Fig. 29: Comparison of soil moisture development of the upmost three layers with a transition 

boundary between Layer 1 and Layer 2. 

Again, both models showed a similar, yet slightly different behavior (Fig. 29). Transport 

from Layer 1 to Layer 2 started immediately as did the movement of water between Layer 2 

and Layer 3 in IPA. Saturation of Layer 1 in IPA is reached slower than in cmf but the result 
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after 40h of simulation is a stable system with comparable saturation near full saturation in 

all layers, although the general IPA behavior was less smooth than cmf. IPA showed slightly 

higher saturation of about 27% in contrast to 26 % for Layer 2 and 3 in cmf. The saturation 

of the infiltration Layer 1 shows for both models exactly the same values. The r² value scores 

0.71, indicating a high correlation between the outcomes of both models, even though the 

dynamics between Layer 2 and 3 differ from those in cmf. This could be related to the di-

lemma of spatiality in the agent-based model as all hydrologic agents have a certain shape 

and it is likely that this shape had a significant influence on the model outcome. The slightly 

higher saturation, might be the cause from the boundary conditions that the global surveying 

agents has to check to avoid oversaturation. 

4.4.3 Influence of model scheduling 

As mentioned before, scheduling of agent actions is a sensible question in agent-based mod-

elling. Especially in the context of parallelization, the question on groups of agents that up-

date their state simultaneously. Here, three different methods for scheduling were imple-

mented: 

 Random calling of agents, that calls agents randomly by chance 

 Energy-based scheduling, that allows agents with higher gradients to move first 

 Age-based scheduling, allow a movement according to the age (either young first, or 

old first) 

In order to test the influence of the scheduling approaches on the representation capacity of 

IPA, a test with the same setup presented in the precedent study, was performed (Fig. 30). 

Random calling of agents was the easiest way to use: Every tick the running order of hydro-

logic agents was determined randomly. It could be seen that a random scheduling led to huge 

smoothing errors because the energy gradient of each agent (the current state of the agent) 

was not taken into account. Deeper layers showed more fluctuations of soil moisture as it 

could be seen from tick 80 - 90. To overcome this random approach, an energy-based ap-

proach was developed: Those agents with the highest energy-gradient were allowed to move 

first, which resulted in smoother results with less numerical fluctuations. This was the case, 

because the advantage of hydrologic agents with a high potential energy limited conflicts 

between slow and fast moving agents. Moreover, it helped to moderate conflicts in pathfind-

ing through a clearly defined regulation which agents had priority in moving first, trying to 

get their potentials in balance. Last but not least, an age-based way to organize the running 

order was implemented. The age was anticipated by the name, because the unique names of 

all agents were not reused as soon as an agent has left the system but originate from consec-

utive numbering during creation. In the test, old water was allowed to move first, so the 

scheduling was in a decreasing order. This approach had some problems with the distribution 

of old water, because the names of those agents that represent old water were rather similar 

because they had been created during initialization.  



Emerging systems modelling by Agent-based models 

88 

 

The correlation coefficients showed that all types of scheduling had less impact in Layer 1 

than in Layer 2, because all methods did have a high correlation among each other (Tab. 18, 

Tab. 19). However, correlation coefficients for Layer 2 showed that the energy based ap-

proach and the age-based approach had high correlation but struggled less with numerical 

artefacts like Random Calling. The soil moisture of the upmost layer was in all three cases 

nearly identical, which shows once more the dependency of the state of the infiltration-af-

fected layer from the chosen infiltration model. From this analysis, it was clear that the en-

ergy-based approach seemed to be the best fitting approach. These scheduling approaches 

may be of interest for upcoming application of IPA because technically this scheduling is 

the major impact factor on the decision making processes of the hydrologic agents, as one 

can see in the analysis, and can be used for hypothesis testing for the behavior of water. 
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Fig. 30: Analysis of different scheduling methods for soil column with two different soils. 

4.4.4 Impact of randomly chosen starting point of hydrologic agents after creation 

Another spatial agent-based modelling specific problem was the starting position for the 

hydrologic agents within the system. The process of infiltration describes the spatial transi-

tion of water from the surface to the soil matrix. Therefore, one can assume that each hydro-

logic agent is located with its complete shape in the topmost layer somewhere near the upper 

boundary. The x-coordinates within this layer were chosen randomly around the top of the 

layer, but always deep enough in the soil such that its shape was completely within the layer. 
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In order to verify the assumptions and to show the impact of different starting positions one 

can show the influence of the chosen starting position for the same model set up with 20 

runs. The starting position was chosen by a random normal distribution with 𝑥 = 𝑊𝑑̅̅ ̅̅ ̅ and 

𝜎 = 𝑝 ∙ 𝑊𝑑̅̅ ̅̅ ̅ while 𝑝 was varied from 0.1 to 0.9 in 20 steps and 𝑊𝑑̅̅ ̅̅ ̅ was the width of layer, 

in the case study 1m. As one can clearly see, soil moisture in the uppermost layer was only 

affected by infiltration because calculated soil moisture was nearly constant without any 

visible influence of the choice of starting position, which makes sense as the hydrologic 

agent is always located completely within it’s the infiltration layer (Fig. 31). 

 

Fig. 31: Influence of randomly chosen starting point. Calculated with 20 runs and a model 

setup with two different soil types. 

Thus the relevant layers were the deeper layers 2 and 3. Both showed slight variations that 

look like numerical oscillations which makes sense as the smoothing affects the calculation 

of layer soil moisture, because the starting position affected the speed and the pathfinding of 

the hydrologic agents. The maximum difference between the estimated soil moistures per 

layer was at 3 % for Layer 2 and 3 and at 0.5% at Layer 1 for the 20 runs. Yet, the variance 

in soil moisture was visible, so, a multi-run of 𝑛 runs should solve the problem and conse-

quently a mean of these 𝑛 runs reducde this numerical artefact effectively that were intro-

duced by the random starting point of the agent (Fig. 32). 
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Fig. 32: Mean resulting soil moisture after 20 runs to reduce effects of randomly chosen start-

ing position. 

4.4.5 Weight assignation: From univariate, fitted spline towards more comprehensi-

ble methods 

In the first step for each hydrologic agent a weight for influence on the layer was assigned 

by a fitted univariate spline with degree 5 in order to smooth the numerical artefacts from 

the calculation of the layer affiliation of hydrologic agents. As univariate splines fit well, but 

interpretation and transfer to other applications is difficult, a density kernel estimator with a 

simple logarithmic distance function to assign a weight, where 𝑤𝑖 denotes the weight of the 

specific hydrologic agent 𝑖 at distance 𝑑𝑙 from the layer 𝑙 with whom it has a spatial inter-

section Eq. (4.9) was chosen. This distance is normalized by the maximum possible distance 

that a hydrologic agent centroid may have with a corresponding layer agent at distance 𝑙𝑑, 

which is defined as the maximum of layer depth or the most far away located agent that still 

corresponds to the layer’s moisture: 
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Hydrologic agents lose their influence on the layer moisture with increasing distance from 

the static layer agent representing the layer center (Fig. 33). Implementing a new weight 

assignation in IPA removed the demand for smoothing the soil moisture per layer. Results 

for the two-layered synthetic case showed that the approach is promising, although it is not 

fully usable because numerical artefacts still appear (especially in Layer 2), where fluctua-

tions around the correct mean soil moisture for this layer occurred with the relative strong 

variation of about 5 % of soil moisture (Fig. 34). Layer 1 was modelled better with less 

fluctuations, the soil moisture raises faster, maximum soil moisture is as well modelled cor-

rectly and showed only little numerical oscillation. In Layer 1 the layer affiliation of each 

agent was only relevant during the transition from the layer of origin to the target layer. The 
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overall r² value was lower with 0.62 than for the spline smoothing, but mean moisture was 

nearly the same (Tab. 3).  

Tab. 3: Statistical parameters from model comparison between cmf and IPA with kernel-

based weight determination 

 

Model Std [%] Mean [%] r² 

cmf 0.033 0.27 
0.62 

IPA 0.042 0.26 

 

The general interpretation that the model showed similar dynamics was supported by an r² 

value that as higher than 0.5, but yet the standard deviation for both modelling approaches 

was much higher with 0.042 % regarding 0.0332 % for cmf or 0.0363 % for spline-based 

IPA. The kernel-based weighting approach looks promising, as the chosen function is easier 

to interpret than a univariate spline. But, for future applications, this weight determination 

has to be improved and might be as well part of a study regarding different distance 

weighting functions and the construction of a method to quickly find the appropriate func-

tion. 

 

Fig. 33: Decreasing weight with increasing distance of agent's centroid to layer centroid. 
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Fig. 34: Modelled soil moisture without spline smoothing but logarithmic kernel weight assig-

nation. 

4.5 Conclusion of ABM in physical hydrological models 

ABM is in the context of alternative modelling and data mining approaches a promising 

addition to classical modelling techniques. The approach fits well for complex hypothesis 

testing, especially for physically-based process models. Here, the rules are given by physics 

and have to be applied to a construct of entities of water. The construct of an encapsulated 

water entity requires more refinement, but the idea of having water agents transporting a 

certain mass through a system interacting with their environment has its advantages for 

chemical modelling as well models that include density changes of the water during its 

course through the model. So, the concept of entities of water is one of the main limitations 

of the modelling approach because it migrates the problem of defining one entity of water 

from the catchment- or layer-sized scale down to the scale of particles but remains neverthe-

less a downside for this type of modelling. 

It was shown that the proposed approach of agent-based modelling could be used for an-

swering detailed physical-based hydrological questions like the movement of soil water 

through a soil column. From comparison with a conceptional cmf-based model, one can 
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conclude that an agent-based approach performs well. Furthermore, its results are compara-

ble to those of a classical Richard’s model with Green-Ampt infiltration set up within the 

cmf framework which is found to be a suitable environment for modelling complex, spatially 

distributed hydrological situations on a physical basis. The comparison revealed some fur-

ther tasks as problems arise from the agent-based modelling dogma: The smoothing for the 

calculation of layer moisture needs further refinement, as a spline requires too many degrees 

of freedom for the task of assignation of weights to each single hydrologic agent (Servat, 

2000). A different kernel function is required (instead of a univariate spline) for better ex-

planatory power of the smoothing process that is needed to compare the highly discretized 

hydrologic agents with the rather rugged layers in cmf. Moreover, the scheduling needs more 

refinement, especially in terms of age-based scheduling that still has a high random compo-

nent, as it became clear during the analysis of different scheduling techniques. From the case 

study presented here, the age and energy-gradient scheduling methods for hydrologic agents 

are the most promising approaches, depending on the research question. 

The computational time of the IPA model is slightly higher than for the cmf model. The 

required computation time could be further lowered by running the framework headless, 

which could be a suitable approach for multi-run optimization approaches like Monte-Carlo 

simulations. The advantages of ABM compensate for the disadvantages of the approach pre-

sented before. For example, the possibility to implement different scheduling approaches is 

a useful approach to test hypothesis of water movement in the soil column based on its age 

or energy-gradient. 

In future research, a focus will lie on possible age distributions for hydrologic agents that 

represent old water. Through that, one can ameliorate the suspension process that hinders a 

hydrologic agent from moving in favor of another hydrologic agent that blocks the route 

along the gradient of forces. So, the commonly observed phenomenon of residual old water 

or pushed out old water due to fresh water intrusion can be modelled. In fact, an age-based 

scheduling also allows finer modelling of hydro-chemical and small-scale pedophysical pro-

cesses that occur during the transport of water through the soil matrix than common storage 

models. Another interesting usage of such a refined age-based scheduling is the residence 

time of water within a coarse rock glacier where melt water is released during rather short 

melting periods and the water draining from these rock glaciers shows different signatures 

of age, proving that some water refreezes during the melt and its drain is delayed to later 

melting periods. Potential applications of spatially distributed hydrological agent-based 

models are numerous and IPA might be a suitable framework to answer more complex hy-

drological questions by adding new rule sets. For the modelling of macro-pore effects on the 

soil water movement, the principle of agent-based modelling can be interesting: The fastest 

hydrologic agents wet the surrounding matrix and allow the following water to use the 

macro-pore as a short-cut through the matrix until the pore is filled. Through the existence 

of other hydrologic agents the macro-pore is filled and travel speed is lowered which results 
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in an alternative pathfinding through the matrix because the potential gradient allows a dis-

persion from the pore to the matrix. Next to residence times, the contact between entities and 

thus the exchange of attributes between the agents might be another application of the AB 

approach. Here, the suspension of chemical tracers and the respective degradation can be 

modelled on a spatial and temporal explicit scale. 

Overall, one can say that IPA and generally agent-based hydrological process models are at 

their beginning. In times of big data and a plethora of highly resolved data, this new model-

ling approach can be of use for those questions where system behavior can easier be de-

scribed with dynamic agent-based models than with stiff storage-based models. Within the 

examples it was shown that the new modelling approach is as good (or as bad) as traditional, 

storage-based models (like those created in the cmf model) but offer the variability of exten-

sion by rules and different scheduling routines. Even at this stage, an agent-based process 

model offers a great variability in model design for future research questions as it is able to 

depict the changing dynamics of model components like in nutrient transport models or com-

plex rock glacier models with changing internal model constellations. By that, the aforemen-

tioned variable inner structure of agent-based models extends the modeler’s capabilities to 

describe those systems.
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5 Computational intelligence in data mining by agent-

based classification 

Apart from novel modelling approaches, big data also requires novel data mining techniques 

like classification of unknown data sets (Chaney et al., 2018; . In the upcoming section, the 

merits of agent-based classification (ABC) and the advantages of soft-computing are inves-

tigated. Therefore, the pixel-wise classification approaches that are common in the hydro-

logical or remote sensing application of image classification has been compared to the novel 

approach. 

Overall, the agent in its core concept remains the same as in agent-based modelling. The 

spatial extent is given by the image object. So, a major disadvantage of the IPA is not present 

in the ABC application. Similar to its modelling sibling, the image object agent has sensors 

and actors for its environment and is embedded in a topology of other image object agents. 

The relations in the neighborhood are known and required for the communication among the 

image object agents. The scheduling does not pose a problem for this formulation of the 

ABC framework. In contrast to the ABM, where all actions are taking place on the same 

action map, all actions in the ABC are parallelized and split onto multiple maps. The best 

improvement by the ABC decides the changes on the general map. 

5.1 Fundaments and origin of agent-based classification 

Next to ABM, Agent-based classification (ABC) approaches have become a matter of re-

search (Chen et al., 2018a; Chen et al., 2018b). Especially in the interpretation of remote 

sensing images ABC is of interest and might utilize the principles of agent-based computing 

for better classification results (Hay et al., 2005; Blaschke et al., 2013; Borna et al., 2014; 

Peña et al., 2014; Hofmann et al., 2016; Hofmann, 2017). Here, image object agents are the 

successors of the object-based image analysis, where a remote sensing scene is not inter-

preted pixel-wise but on the basis of similar objects. In the traditional, pixel-wise image 

classification each pixel is analyzed on its spectral information (Tso and Mather, 2009; 

Lillesand et al., 2014).  

In remote sensing, image interpretation is the common method to retrieve a desired infor-

mation from remotely sensed data. As sensors do not directly measure the information, like 

evapotranspiration, ground-true data is used to link known information with spectral or ra-

diometric signals. Patterns in the data between the different signals can either be detected by 

natural breaks, the so called unsupervised classification, or by regions of interest that act as 
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training regions with a manually assigned class (Lillesand et al., 2014).  

In the traditional approaches for each pixel a class is assigned. Even though neighboring 

pixels may have the same class, the pixels do not represent an object but a collection of 

isolated and blind individual pixels. In the object-based image classification, pixels that 

share similar characteristics are merged by a segmentation algorithm to similar objects. 

These so-created objects have a geospatial extent and are embedded in a neighborhood of 

other objects. This network or topology of objects can be incorporated in the analysis and 

adds information to the image interpretation process that else could not be used or derived 

from the existing data (Lang et al., 2014; Chen et al., 2018a; Wang et al., 2018). The objects 

are then classified by the classification scheme. 

ABC takes object-based classification as fundamental (Hofmann et al., 2016). This means 

that pixels with similar characteristics are combined as meaningful objects. This combina-

tion is performed by a segmentation algorithm that segments the remote sensing scene into 

separated objects. These objects are the initial image object agents. The image object agents 

share the fundamentals with the hydrologic agents from Sec. 4. They are embedded objects 

that try to achieve a goal by choosing independently from a pre-defined set of actions. The 

image agents have a major advantage over the pixel-wise image classification and the object-

based classification: The agents communicate among each other and allow therefore an op-

timization of the classification within the structure of image objects. 

Like ABM an ABC requires a software environment that allows the organization of autono-

mous software units. As an additional requirement one can add the support of stacked remote 

sensing images, the so-called scenes. Moreover, the geospatial topology of objects has to 

remain intact, even if the shape or the position of the object is altered. Furthermore, the 

objects have to work on different layers to evaluate the outcome of different options. In this 

study, the choice as the environment fell on eCognition Developer (eCognition Developer, 

2014). eCognition allows to segment images and maintain the network of segmented objects. 

5.2 Delineation of irrigated agriculture in Nebraska with ABC 

For the purpose of demonstrating the advantages of ABC, the novel approach was applied 

to delineate irrigated agriculture in Nebraska, USA. The application of ABC was hence fo-

cused on water resource management. Irrigation is a major component in the hydrological 

circle and widely influenced by human activities and decisions (FAO, 2012). Yet, spatial 

information on irrigation is sparse, although the information is crucial for the development 

of global water usage models and their respective application in the calculation of scenarios 

(Siebert et al., 2010; Hoogeveen et al., 2015; Salmon et al., 2015; Meier et al., 2017;). There-

fore, many remote sensing studies cover crop identification and the existence of irrigation, 

especially in data sparse regions (Debats et al., 2016; Boyaci et al., 2017; Pun et al., 2017) 
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To demonstrate advantages and possible downsides of ABC in contrast to established clas-

sification approaches, a comparative study showed the major improvements by the approach 

as presented and was published in Mewes and Schumann (2018a). To compare the funda-

mentally different approaches, a shared theoretical background with similar classes and la-

belling strategy needs to be developed (Berhane et al., 2018). Hence, the choice fell on a 

fuzzy labelling scheme that assigns each target (either pixel, object or image agent) a class 

with a certain membership µ. Eventually, each object has a membership value for each pos-

sible class. The maximum membership µ defines the resulting class of the target. This ap-

proach is applicable to all presented examples. Moreover, it fits well to the fuzzy nature of 

object- and agent-based classification (Benz et al., 2004; Belgiu et al., 2014a; Hofmann, 

2017). 

5.2.1 Study region and reference data 

The plains of Nebraska, USA, were chosen as region for an initial application due to the 

available reference data on spatial distribution of irrigated agriculture from COperative Hy-

drological STudy map, COHYST (Center for Advanced Land Management Information 

Techniques, 2005). From the complete state of Nebraska, two example regions were chosen 

with low amounts of urban land cover and a high share of agriculture from the CropData-

Layer (CDL, Johnson and Mueller, 2010). As spectral input, Landsat 5 Enhanced Thematic 

Mapper (ETM) remote scenes were chosen. The scenes were stitched for the region of Ne-

braska, divided into quarterly observations of three months to guarantee a cloud-free image 

covering the time-span from January 2005 to December 2007. So, the data was split into 

mean images covering the seasons 1 – 4 covering a time span of 3 months starting with 

season 1 in January and ending with season 4 in December. 

The choice fell on Landsat 5 TOA data due to the reference data which was updated the last 

time in 2005, when Landsat 7 already failed and Landsat 8 was not yet launched. Landsat 5 

delivers spectral information on seven different bands with a 30 m spatial resolution:   

 

Tab. 4: Wavelength and bands of Landsat 5 platform (Lillesand et al., 2014) 

Band Wavelength [µm] 

Band 1 - Blue 0.45 - 0.52 

Band 2 - Green 0.52 - 0.60 

Band 3 - Red 0.63 - 0.69 

Band 4 - Near Infrared (NIR) 0.77 - 0.90 

Band 5 - Short-wave Infrared 1.55 - 1.75 

Band 6 - Thermal Infrared 10.40 - 12.50 

Band 7 - Short-wave Infrared 2.09 - 2.35 
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As one can see in the true-color image (Fig. 35), both regions showed signs of the existence 

of irrigated agriculture. At the pivot irrigation plots, one can assume that the time when the 

scene was captured by the sensor, this land was either vegetated (presented in green) or bar-

ren (brownish colors). On the northern and eastern border of Region B, erroneous input data 

are visible where the mosaicking of different Landsat scenes and paths was conducted. Ur-

ban areas were not visible in the true-color images, a cross-check with landuse data also 

revealed no further human use in the investigated regions. 

 

Fig. 35: True-color image of both regions investigated. Agricultural objects become visible in 

each region, represented through homogenous, clearly differentiable spatial objects, like 

pivot irrigation. 

As computational time for the agent-based approach is high, only two relatively small sub-

sets with a high variety of crops grown and different irrigation techniques were selected. 

Region A was chosen manually according to the obvious existence of radially irrigated plots 

and Region B by a stratified random sample that comprises the highest variability of grown 

crops from CDL in Nebraska (Johnson and Mueller, 2010). Moreover, the choice was re-

stricted to regions without urban influence to lower the chance of confusion. The size of the 

subsets is similar (Tab. 5). Both subsets contained irrigated and non-irrigated areas, which 

qualified them for the investigation of the presented workflow. 

Tab. 5: Size of investigated regions (in pixel) in Nebraska with a pixel resolution of 30m 

Size Region A Size Region B 

142 x 219 219 x 165 
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All spectral data was gathered from Google Earth Engine (GEE), which is a freely available 

remote sensing cloud-based archive comprising also data like CDL directly from the pro-

vider without any other database system for queries and data pre-processing. All named in-

dices were calculated in the GEE IDE (Integrated Development Environment). 

5.2.2 Spectral indices for the identification of irrigated agriculture 

For the classification of irrigated agriculture, several indices from spectral data were calcu-

lated: The NDVI (Normalized Difference Vegetation Index) and NGI (Normalized Green 

Index) were computed from corrected top of atmosphere (TOA) reflectance values captured 

by the Landsat 5 Enhanced Mapper. To cover the seasonal variability for each season a 

cloud-free mean Landsat image covering 3 months was mosaicked.  

The NDVI is a normalized index Eq. (5.1), which reveals the vegetation activity and is com-

puted through the visible red band ρred and the near infrared band ρnir ranging from -1 to 1 

(Lillesand et al., 2014). The NDVI is a well-known index to describe the plant activity and 

health. Due to the choice of widely available bands from infrared and near infrared, the 

NDVI can be calculated from nearly any spectral sensor. This lowers the bias by the index 

and emphasizes the universality of the classification approach comparison. 

 
nir red

nir red

NDVI
 

 





  (5.1) 

The NGI is an index more robust to identify irrigation as it takes the green activity into 

account (Pun et al., 2017). It is the product of the Green Index (GI) and the aforementioned 

NDVI (Boyaci et al., 2017). The choice of the NGI as an additional spectral index puts a 

higher weight on the green activity of the plant. This can be used to distinguish between 

irrigated plants that grow within their potential in contrast to plants that suffer from drought 

and a water gap in the growing season. 

 NGI NDVI GI    (5.2) 

Finally, the GI is defined through the band ratio where ρnir again is the near infrared band 

and ρgreen stands for the green band: 

 nir

green

GI



   (5.3) 

This relation between the near infrared (or thermal infrared) and the green band of the sensor 

allows to judge the plant activity in the leaf. It covers the chlorophyll activity and the result-

ing transpiration of the plant (Ozdarici-Ok et al., 2015). 

5.2.3 Fuzzy classification scheme 

As mentioned before, the labelling was conducted via a one-to-many fuzzy classification 

scheme that was built by an ontology (Arvor et al., 2013; Belgiu et al., 2014b; Andrés et al., 

2017). An ontology is a kind of guide book combining the information given by the objects 
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and the chosen spectral indices and ancillary information. The result is the membership µ to 

the respective class if the classification scheme is described in a fuzzy manor (Benz et al., 

2004). The maximum µ defines the class of the object or agent. 

The class Agr was likely to be assigned if the shape of the target object was either round or 

rectangular, due to the human influence on the shape of the agriculturally used plot (Fig. 36). 

Moreover, the object must have exhibited NDVI values > 0. The class Irr was assigned once 

that the target had a high similarity to class Agr but also showed higher NGI values and the 

distance to a neighboring irrigated plot was small. The barren soil class Barren had charac-

teristically low NDVI values but the shape of the object had an anthropogenic character like 

objects of class Agr or Irr. The membership to the class Barren decreased near NDVI = 0 

where the vegetated part of the index began.  

In this approach, the class Irr comprises a characteristic, limited to the agent-based approach: 

The distance to the next object labelled as Irr. This characteristic is limited to agent-based 

classification, as other agents can only be identified as Irr after a first iteration. In this case, 

one can assume that irrigated plots are located near to other irrigated plots. So, the member-

ship to the class Irr increased the lower the distance to the next irrigated plot was. This 

proximity criterion was restricted to the object- or agent-based approach because the distance 

to the next object was merely dominated by the grid structure of the pixels. 

These membership functions are adjustable to the problem and require expert knowledge of 

the objects to classify the target region: e.g. the NDVI curve for vegetation depends on the 

investigated region with its variety of crops and cropping techniques. Here the knowledge-

based characteristic of agent-based computing becomes obvious again. Without the expert 

knowledge on the behavior of classes the classification scheme could not be attributed. 
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Fig. 36: Ontology of membership functions for classes non-irrigated Agriculture (Agr), irri-

gated Agriculture (Irr) and Barren. 
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5.2.4 Object-based classification for the delineation of irrigated agriculture 

As mentioned before, object-based image classification requires a segmentation of the scene 

into meaningful objects. Hence, an appropriate algorithm for segregation is required. The 

choice fell to the multiresolution segmentation algorithm implemented in eCognition Devel-

oper 9.3 (eCognition Developer, 2014). This multiresolution segmentation algorithm (MRS) 

starts with a single pixel and merges neighboring pixels until the threshold value of shape is 

reached or the neighboring pixels are not similar in specified characteristic like a mean band 

value or the texture (Baatz and Schäpe, 2000). The parametrization of the segmentation pro-

cess remains a problem that is often solved by trial and error (Hay et al., 2005) or specialized 

tools. The parameters used for the multiresolution segmentation were estimated by the esti-

mation of scale parameter (ESP) approach (Drǎguţ et al., 2010) and fitted a set of segmenta-

tion parameters for the whole scene to lower the classification error (Tab. 6). 

Tab. 6: Segmentation parameters from ESP 

Scale Shape Compactness 

5 0.1 0.5 

As spectral input, NDVI and the NGI were applied to perform a segmentation for each sea-

sonal image. This segmentation finally led to 200 – 500 image objects per scene that shared 

similar NDVI and NGI values. The classification was conducted through the ontology de-

fined before and lead to labelled objects. To use the NDVI and the NGI in the MRS with its 

integer band weights, the NDVI and the NGI were normalized to an 8 bit integer covering 

the values from 0 - 255. In case of the NDVI the minimum value -1 was normalized to 0, 

whereas the former maximum was normalized to 1. For a better readability and comparabil-

ity of the later applied values, this normalization was removed again after the classification.  

5.2.5 Agent-based classification for delineation of irrigated agriculture 

Agent-based classification extends the previously shown concept of object-based image 

classification by a variable communication between the objects to improve the classification 

results (Hofmann et al., 2015). Through negotiation among each other, the agents choose the 

action that leads to the largest improvement of the classification. For example, the agents 

merge with promising neighboring objects or grow if the membership to the target class is 

increased (Fig. 37, Fig. 38). The main feature that the agent-based classification focusses on 

is the shape of the object. Therefore, the rectangular fit and the roundness of the object are 

included in the classification scheme. The rectangular fit follows a sigmoid function with 

the minimum at 0.0 and the maximum at 1.0. Meanwhile, the roundness behaves reversely 

to the rectangular fit with the maximum at 0.0 and the minimum at 1.0. 

Each image object agent is embedded in the topology of neighbors and tries to maximize its 

class membership µ to one of the classes. To retain the topology is one of the major tasks of 

the software environment eCognition. After each agent alteration step, the topology of the 
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scene had to be reevaluated and the neighborhoods remapped. Without knowledge of neigh-

borhood connections between the agents, the action maps for growing and merging cannot 

work and the relation of the agents is important to save computational time. In order to lower 

the computational demand only direct neighbors of the agent are asked for merger. Also the 

environment for growing and shrinking is limited to 10 pixels from each border to lower the 

number of possibilities per iteration. A wider area for growing and shrinking would demand 

tremendously more storage, as each pixel in each direction means 4-8 additional pixels.  

One of the major advantages of agent-based image classification is the implication of the 

history and an adaption of behavioral rules towards environmental changes. The primer ad-

vantage will be analyzed in this study. This is of special interest for the delineation of irri-

gated agriculture because the cropping scheme may alter within a short period of time but 

the spectral input might not directly deliver enough data to identify the area as irrigated.  

For example: In year 1 the spectral information gave clear hints that region A is irrigated. 

The grown crop is irrigated when drought occurs, so in the following, wetter year the irriga-

tion is not used to save money. ABC should gather this information from the agents: What 

are the general conditions, what happened in the last period of measurement, etc? This in-

formation is used in the classification for year 2. Here, the region A is still classified as 

irrigated but with a lower class membership that will further decrease until valid information 

from the remote sensing data is integrated. 

To use information about the past of the image object agents, a single slot spatio-temporal 

memory is included. Once that a scene is classified by the agent-based classification ap-

proach, the agents are stored for the next season and the next year as a shapefile comprising 

the shape and the assigned class. This shapefile is used instead of the segmentation to create 

a first set of image object agents.  
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Fig. 37: Flowchart of object manipulation in agent-based image analysis. The agent-based ob-

ject alteration is part of an iterative process on two separated maps covering both decision 

maps. 

In the first time step, the image objects originating from the segmentation process are the 

basis for the agent-based classification. They form the main map upon which two separate 

action maps are created: the grow map and the merge map (Fig. 37). For each action the 

outcome in terms of improvement of maximum class membership are calculated. On the 

final decision map the best choice of all actions by the maximum improvement is performed. 

This alteration of image agents is repeated until no further improvement of maximum class 

belonging is measurable or the maximum number of five iterations is exceeded. The number 
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of iterations is limited to five to keep computational time low. A higher number of iterations 

may improve the results but each iteration doubles the amount of required storage because 

of the two individual action maps. 

 

Fig. 38: Defined agent actions that allow alteration of structure to improve classification out-

come and their respective effect on the changed structure and topology of objects. 

5.2.6 Accuracy measure 

To measure the performance of the approaches in comparison to real-world data the classi-

fication accuracy was calculated by a confusion matrix (Tso and Mather, 2009). This matrix 

comprises four components: true positive (TP), false positive (FP), true negative (TN) and 

false negative (FN). In this case study, positive means a classification as Irr, whereas nega-

tive stands for a classification of any other class. So, e.g. an object identified as Irr by the 

agents or in object-based classification that is also in reality an irrigated object is counted as 

a true positive. On the other hand, if an object of any other class is identified but the object 

is irrigated agriculture in reality, the result counts as a false negative. This strict formulation 

is softened by the extension that Barren objects are also counted as Irr, because the irrigation 

specific characteristics might be invisible after sowing or harvest when agricultural plots are 

barren. In the following sections, this way of accounting is referred as “soft” in contrast to 

the aforementioned “strict” formulation. 

The accuracy was computed through the number of elements that are correctly identified as 

the target class, in this case Irr, and the total true number of objects known as Irr. In order 

to keep results comparable, all objects are dissolved into pixels, which means that the total 

number N of all elements remains the same for all approaches. For example, AccTP (5.4)
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describes the accuracy of correctly identified irrigated objects: NP, the number of objects 

correctly identified as Irr, divided by the true number of irrigated objects NKP. This measure 

of accuracy is also computed for the cases TN, FP, and FN. 

 
P

TP

KP

N
Acc

N
   (5.4) 

This measure of accuracy was chosen because it does not affect any of the classification 

approaches because only the respective results from the methods are compared. Moreover, 

this measure of accuracy is valid for all utilized approaches and is not limited to any of the 

methods. Furthermore, in this accuracy measure the different counting methods can easily 

be implemented, allowing the comparison of hard and soft similarity definitions. 

5.2.7 Comparison between ABC and traditional image interpretation approaches 

The main focus was laid on the results from season 2 that covers the period April – June 

because that is the season when most of the crops are planted and the harvest season has not 

yet started. All crops grown should be in the green phase of their respective phenological 

development. So, one can assume that most agricultural plots should be covered by crops. 

The visual comparison of the three approaches in Region A showed that already the pixel-

based approach resulted in interpretable patterns that reminded of real-world patterns in the 

ground true data (Fig. 39 and Fig. 35).  

The objects were homogenized by the agent-based classification where several objects were 

merged and the shape altered to increase the maximum class membership. So overall, the 

ABC results showed a more complete classification of the scene. In contrast to the pixel-

based approach, the network of objects became visible in the ABC results. For this time step 

no history was available for the agents, hence no information from the genesis of the agent 

could be taken into account. In the pixel-based classification the class Other Landuse was 

not assigned, whereas in both object- and agent-based classification this class was used. 

Some of the circular objects were classified as Barren because of low NDVI values and very 

likely low plant activity when the scene was captured by the sensor. In comparison to the 

ground true information on irrigation only few were misclassified as Agr (non-irrigated ag-

riculture). Apparently, the NDVI was high enough to suggest a classification as Agr, but the 

NGI was too low to alter the maximum class membership in favor of Irr.  

As mentioned before, two different methods to determine the Acc the ‘soft’ and the ‘strict’ 

formulation were applied. The strict formulation counted only assigned irrigated agriculture 

as irrigated agriculture, while the soft formulation also counted assigned barren regions as 

irrigated agriculture. The strictly formulated accuracy achieved by the pixel-based approach 

for the detection of irrigated agriculture scored a higher Acc value than the soft formulation 

(Tab. 7). The object-based approach scored slightly weaker results for the detection of irri-

gation using the strict formulation but improved for the soft formulation. Interestingly, both 
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techniques using the object-based approach identified more irrigation pixels correctly (ob-

ject-based strict 94.9%, agent-based strict 96.1%) than the purely pixel-based approach 

(64.6%) formulation (Tab. 7). The improvement of the iterations in the agent-based classifi-

cation was only slight and reduced the accuracy by only 0.9%. Allowing class Barren to 

count as Irr reduced the number of classes that form the negative fraction of the accuracy 

and consequently increases the indicator for TN by 11.5% - 19.3% (Tab. 7). The agent- and 

object-based classifications showed their advantages in the completeness of the retrieved 

classes, but the accuracy only slightly increased. The overall accuracy could be improved by 

a more detailed classification scheme. Without a more detailed classification strategy, the 

advantages of the agent- and object-based classification were only noticeable in the com-

pleteness of the derived image objects because the applied data did not allow enough degrees 

of freedom in this classification scheme. 

Tab. 7: Accuracy in Region A shown for each of the three approaches through an error ma-

trix. The same fuzzy classification scheme is applied to all three different approaches. Re-

sults from the agent-based approach are shown after one iteration and five iterations. For 

each formulation of the accuracy rule, the results are presented individually. The object- 

and agent-based approach improve the correct identification of irrigated objects by 30 % 

– 32.4 %. 

Classification methods Accuracy evaluation indices 

TP TN FP FN 

Pixel-based, strict 0.646 0.814 0.354 0.186 

Pixel-based, soft 0.442 0.997 0.558 0.003 

Object-based, strict 0.949 0.624 0.051 0.376 

Object-based, soft 0.654 0.817 0.346 0.183 

Agent-based, strict 0.961 0.622 0.039 0.378 

Agent-based, soft 0.646 0.814 0.354 0.186 

Agent-based 5x, strict 0.970 0.700 0.030 0.300 

Agent-based 5x, soft 0.671 0.815 0.329 0.185 
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Fig. 39: Classification results from pixel-, object- and agent-based classification in Region A in 

Season 2 (May – June). The pixel-based approach already shows a pattern of pixels that is 

close to the ground-true information on irrigation. Meaningful objects are created by ob-

ject- and agent-based classification, that both improve identification accuracy. Some irri-

gated areas are classified as Barren, which is a result from low plant activity when the scene 

was captured by the sensor. 
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In Region B (also in Season 2) the accuracy values for the identification of irrigated areas 

using the object- and agent-based approach were lower than in Region A (Tab. 8). Here, the 

object- and agent-based approaches were not able to identify any irrigated areas. Formulat-

ing the accuracy the soft method, the pixel-based approach assigned the class Irr in only 

42.1% of all cases correctly, whereas the object-based approach had a true positive identifi-

cation quota of 99.0%. This result had to be related to the TN value, showing that less than 

60% of the other classes were assigned correctly. Agent-based classification on the other 

hand assigned the class Irr in 74.5% of all cases correctly with the soft formulation. The lack 

of identified irrigated areas in the object- and agent-based classification was a result from 

the low mean NGI values of the segmented objects. While single pixels showed NGI values 

high enough to justify a classification as Irr, the objects had a lower mean NGI and were 

thus classified as Barren or Agr. 

Tab. 8: Accuracy in Region B (Season 2) shown for each of the three approaches through an 

error matrix. The same fuzzy classification scheme is applied to all three different ap-

proaches. The strict formulation of accuracy shows that neither object- nor agent-based 

classification are able to identify any irrigated area. 

Classification methods Accuracy evaluation indices 

TP TN FP FN 

Pixel-based, strict 0.935 0.597 0.065 0.403 

Pixel-based, soft 0.421 0.597 0.579 0.403 

Object-based, strict 0.000 0.594 0.000 0.406 

Object-based, soft 0.99 0.594 0.010 0.406 

Agent-based, strict 0.000 0.594 0.000 0.406 

Agent-based, soft 0.745 0.594 0.255 0.406 

Agent-based 5x, strict 0.000 0.594 0.000 0.406 

Agent-based 5x, soft 0.745 0.594 0.255 0.406 

 

Due to the weak results of all approaches in the Region B in Season 2, the focus was shifted 

the next quarter of the year, Season 3 covering July – September, when harvest was just 

about to start for many crops, like winter wheat, potatoes and sunflowers grown here. The 

shift towards the next quarter shows slightly improved pixel-based accuracies, although the 

identification of Irr delivers worse results. The identification of non-irrigated areas improved 

using the strict formulation (Tab. 9). The results of the pixel-based approach using the soft 

formulation remained the same more or less. Both, the object- and the agent-based approach 

are finally able to successfully identify irrigated areas although the performance of both ap-

proaches stays behind those from Region A. Here, the identification rate of irrigation reaches 
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47.5% at maximum whereas the non-irrigated areas are classified in approximately 60% of 

the cases. 

Tab. 9: Accuracy of all approaches applied in Region B in season 3 that covers July - Septem-

ber. Here, the object-based methods are able to identify irrigated agriculture with the strict 

formulation. The iterations in agent-based image classification show nearly no influence on 

the results. 

Classification methods Accuracy evaluation indices 

TP TN FP FN 

Pixel-based, strict 0.624 0.737 0.376 0.263 

Pixel-based, soft 0.439 0.713 0.561 0.287 

Object-based, strict 0.412 0.574 0.588 0.426 

Object-based, soft 0.482 0.613 0.518 0.387 

Agent-based, strict 0.475 0.612 0.525 0.388 

Agent-based, soft 0.418 0.579 0.582 0.421 

Agent-based 5x, strict 0.475 0.612 0.525 0.388 

Agent-based 5x, soft 0.418 0.579 0.582 0.421 

 

The visual comparison revealed that both, the objects and the image agents, presented a more 

homogenous pattern in contrast to pixel-based classification. Again, the pixel-based ap-

proach did not assign the class Other Landuse, whereas the object- and agent-based ap-

proaches struggled with the classification of objects close to the border (Fig. 40). Most of 

the objects close to the fringes were classified as Other Landuse which was in this case a 

sign of erroneous input data. The misclassification in this scene became obvious which led 

to an underestimation of class Irr and an overestimation of class Other Landuse. Conse-

quently, the object- and agent-based classifications only worked in the center of this specific 

subset. In contrast to results from Region A, the agent-based approach substantially im-

proved the results from object-based classification and increased the irrigated areas towards 

a more realistic pattern. 

Using information from the previous period in the following year, the results showed that 

the agent-based classification performed best in terms of the classification of irrigated and 

non-irrigated agriculture (only shown with the strict formulation, Tab. 10, Region A Season 

2). While the accuracy of the correctly identified irrigated agriculture stays low at 53.7%, 

the identification of all other classes remains high, 61.5%. Pixel- and object-wise classifica-

tion with a new segmentation showed higher accuracies for the identification of irrigated 

agriculture (91.2%, respectively 99%) but failed on the identification of all Other Landuse 

classes (45.2%, respectively 42.3%). So, the overall accuracy using the historic information 
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by agent-based classification allowed at least a classification accuracy of >50% which was 

better than in any other approach shown here. 

Tab. 10: Accuracy of all approaches applied in Region B in season 2 incorporating the 

memory of the agent’s classification of the antecedent year. Agent-based classification de-

livers the overall best accuracy in detection of irrigated agriculture. 

Classification methods Accuracy evaluation indices 

TP TN FP FN 

Pixel-based, 0.912 0.452 0.088 0.548 

Object-based 0.990 0.423 0.010 0.577 

Agent-based 0.537 0.615 0.463 0.385 
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Fig. 40: Classification results from pixel-, object- and agent-based classification in Region B in 

Season 3 (July – September). In contrast to region A, objects and agents close to the border 

of the scene are erroneous whereas the pixel-based classification delivers a suitable and close 

to the ground-true data classification of the scene. 
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5.3 Concluding remarks on the application of ABC in hydrological remote 

sensing 

Agent-based approaches add a dynamic component to models and data-driven analysis strat-

egies. Through the manifoldness of independent software components and the emergent 

character of their interplay, AB methods offer a variable tool set for hydrological and water 

resource management problems. In this extension, the AB modelling concept was extended 

to interpret remote sensing scenes. With the focus placed on object and agent-based methods 

for remote sensing analyses with special regards to the delineation of irrigated agriculture. 

It was clear that both novel methods delivered similar or better results to the classic pixel-

based approaches. Although pixel-based classification resulted in patterns also comparable 

to the observed real-world structures, only classification originating from object- and agent-

based approaches created coherent and meaningful objects, which are required for spatial 

hydrological or water resource modelling. Generally, the concept of agent-based image clas-

sification ameliorates the promising results from purely object-based classification. Hence, 

one can propose agent-based image classification as a suitable tool for the pre-processing of 

remote sensing data in hydrological or water resource management models, due to the more 

meaningful representation of the real-world problem. 

The classification framework is still in its initial state and might thus be a subject for further 

improvements. Specifically the knowledge on which a crop is grown on the object of interest 

might be a trigger for improved results. Moreover, one can see that the agent-based image 

classification ameliorates all object-based results, even with less than 5 iterations (Region 

B), which is a strong argument for pro agent-based classifications. Adaptive image agents 

that alter their rule set in classification and not just their shape would reduce the impact of 

expert knowledge in unsupervised learning (Hofmann et al., 2016; Hofmann, 2017). Mean-

ing, the initial classification scheme could be adapted towards a more versatile and dynamic 

classification strategy, especially in data sparse regions. 

Future research is planned on a refined database system that stores the image objects. By 

adding the history of the agent the robustness of the agent-based classification approach was 

strengthened. Moreover, the so modified classification process might reveal temporal 

changes, either seasonal (Season 2: Barren, Season 3: Irr) or long term (land use changes, 

cropping technique changes, etc.) more easily. Hence, the application of agent-based classi-

fication for the interpretation of spatio-temporal varying systems is of advantage. Here, ma-

chine-learning algorithms can be used to improve the rulesets and add even more information 

from the data to the classification process. 

Together, the results are very promising, especially with regard to water resource modelling, 

where the knowledge about the spatial distribution of irrigated agriculture has a leverage on 

prediction capacity. Furthermore, hydro-metrological data sets should be included to further 

incorporate neighborhood relations between assumed irrigated plots and non-irrigated plots 

to withdraw information from the general availability of water and the NDVI and NGI values 
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of the plots. Furthermore, it is planned to fully incorporate the SEBS evapotranspiration 

dataset (Su and Su, 1988) to use the identification scheme by Boyaci et al. (2017) by incor-

porating the evaporative fraction (ETRF) in the classification scheme. 
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6 Adaptive agent-based modelling  

As mentioned before, ABMs are used to model types of coupled systems with anthropogenic 

influence, originally in social sciences, later in ecology and finally in hydrology and water 

resource management (Ng et al., 2011; Mashhadi Ali et al., 2017; O’Connell, 2017; Gunkel, 

2005; Lempert, 2002; Bithell and Brasington, 2009; Bouziotas et al., 2017; Mewes and Schu-

mann, 2018b). ABMs are often used, despite that can be highly empiric and specialized to 

describe the situation in a defined context. Consequently, a transfer to a similar but different 

problem is limited due to the hard-formulated behavioral rules of the agents (Bruch and At-

well, 2015). 

In the times of big data archives delivering information with high temporal and spatial reso-

lution, this dynamic modelling approach might shed some light onto hidden patterns in the 

data and yet unknown relations between actions and causes that lead to observed patterns. 

The rules of interaction and behavior for the ABM have to be defined a-priori. This turned 

out to be a non-obvious task (see Sec. 4 and Sec. 5). Data-driven approaches for the creation 

of behavioral rules are rare; most of the applications depend on manual rule definition. 

Although ML approaches are widely used for data analysis in terms of big data and pattern 

recognition, these learning algorithms are not popular to derive or to adapt behavioral strat-

egies in ABMs. ML is the hypernym for programs that detect patterns in data and relate them 

in an algorithm with a known output. So, one could consider the ML as program that learns 

from a set of known data to predict a target value or to classify a set of unknown data. 

Changing the behavioral rules of agents would represent a simple adaption strategy, which 

the agents might be able to adapt to a changing environment. Moreover, unforeseen relations 

can be revealed by the path of alteration presented during the course of the model. The al-

teration of existing rules is the primer step to advanced reinforcement learning that would 

also allow a creation of behavioral rules at run time of the model. Right now, there are no 

frameworks and only few concepts to incorporate ML for alteration of behavioral rules in 

agent-based models. As a primary step, evolutionary games can be used to reach a farmer 

specific optimization by behavioral adaption (Janssen, 2007; Lansing et al., 2017). Never-

theless, these evolutionally games are not suitable to change a model at runtime. 

In the case study, a simple agent-based irrigation model with a data driven machine-learning 

adaption strategy is presented. The adaption strategy allows changing behavioral rules to 

maximize the global yield at the runtime of the model. As a reference model for irrigation 

Lansing’s model of Balinese water temples is taken, that was originally set up as a cellular 

automata model with no communication between the isolated cells (Lansing, 2007). In the 
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agent-based model, the isolated cells are replaced by autonomous software units that repre-

sent the farmers and the temple. To reduce the amount of parametrization and to replicate 

the learning effect of the system, ML is used to identify classes of situations. This classifi-

cation is later used in the adaptive agent-based model to identify the current system and to 

adapt the agents’ behavioral rules to it. This does not mean that the rules are  fundamentally 

changed in their fundaments, but that the thresholds are adapted that trigger a certain behav-

ior. With synthetic runs, the general applicability of a ML approach as an adaption strategy 

is shown. Furthermore, the implications added by adaptive agent-based modelling and ML 

for adaption strategies are discussed. 

6.1 Methods  

6.1.1 Balinese water temple cult 

The anthropologist Lansing (2007) found that the medieval Asian culture developed a water-

based faith to distribute water, plan the sowing of rice and synchronize the date of harvest in 

order to improve the rice yield from the harvest on the island Bali. Regardless the limited 

possibilities of their time, an effective pest control mechanism was achieved by a collective 

harvest: harvest all rice before any disease could severely damage the plants in order to starve 

out all pests. The society developed a water-based religion organized by local temples to 

distribute the water among the farmers. Furthermore, to reduce the vulnerability towards pest 

and maximize to communal rice yield, the harvest was synchronized. As a result of this 

approach, the rice pests were killed by withdrawing the host from the parasite. Lansing 

(2007) showed by a cellular automata model that this strategy led to the highest possible rice 

yields that were possible by the contemporary technological methods without the need for 

chemical herbicides and fungicides. Nevertheless finding how this model was optimal the 

evolution of this strategy remains unclear as written historical documents from this time are 

not available. 

6.1.2 Lansing’s Balinese irrigation model 

Lansing’s model describes the Balinese irrigation system as a set of a temple with a varying 

number of connected farmers. The temple defines the quantity of water distributed to the 

farmers and synchronizes the harvest in order to minimize the loss in yield that is caused by 

pests. In the model, the global pest level is given by the variable D that increases exponen-

tially. If D hits the maximum value of 1.0, all the harvest is lost to pest and the communal 

yield equals 0. Generally, the temple has the choice between two different rice varieties: a 

normal yielding rice plant and a high yielding variety. The high-yielding rice variety was 

emphasized to double the expected yield, whereas the normal rice plant yields 1/12 [t] per 

month. The yield grows linearly over the growing season for both varieties. If the required 

water can not be delivered, the plant suspends growth until the water demand can be covered. 
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The expected yields are purely synthetic values influenced by those values presented in Lan-

sing (2007). The growing season of rice starts with the sowing in March and lasts until the 

harvest in September.  

Next to the higher vulnerability towards pests, the high-yielding rice varieties require more 

water to mature in contrast to the normal yielding rice plants: 0.5 water units for normal 

yielding rice, 0.8 water units for high yielding varieties. To feed this water demand, the 

temple distributes the water from a storage to the farmers. The storage Stemple was defined as 

a minimum function with a maximum capacity set to 2 water units:  

 min( ,2)temple iS S   (6.1) 

The water supply to the temple from a hypothetic river was modelled by a synthetic time 

series of runoff that offers a set of 11 different sequences of monthly runoff with similar 

characteristics. The water supply followed in its main core a sinus-shaped function with 

temporal peaks from flood and drought periods. The occurrence of those events is adjusted 

over the year to create different situations for the temple and the farmers. Because of local 

climate and the geographical location, the dry phases occur mostly before the monsoon sea-

son in June and July. Moreover, some variations in the magnitude led to shortages or over-

flow of water. In cases where the temple stores less water than the farmers demand, the 

amount of water is distributed a) fairly among all or b) with preference towards the high-

yielding crop farmers (HY). The overall goal of temple and farmers is to maximize the global 

rice yield.  

The development of D is given by a simple sigmoid function defined in the domain [0,1] 

where t equals the month in the year: 
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The vulnerability of the grown rice varieties towards the disease depends on the grown rice 

variety. High yielding varieties are exposed with a higher coefficient c (doubling the growth 

of pests) than normal yielding varieties where c equals 1. If D reaches the global maximum 

of 1.0 at any farm, the complete harvest is lost to pest. Next to a higher disease vulnerability, 

the water demand for high yielding crops is higher than for normal yielding crops as well. 

The disease threshold Thrs(D) triggers the communal harvest and is also set by the temple. 

If D ≥ Thrs(D) the temple releases a signal to the farmers to start the harvest. This threshold 

represents a certain risk for the community if the share of farmers with high-yielding rice 

varieties is too high and a high threshold is taken, the risk of a complete loss of higher than 

in a conservative strategy with a lower threshold. But, if the threshold is too low, the expect-

able yield decreases because harvest starts too early. So, in general the Thrs(D) is character-

ized by a tradeoff between yield surplus and the risk of loss. 

In the model defined by Lansing, the temple plans once a year the cropping pattern in the 

upcoming growth season (i.e. the distribution of normal and high-yielding rice varieties) and 
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the starting point of sowing. By the cropping scheme, the temple can adapt to changing en-

vironmental conditions, i.e. if the temple priests expect dry or a wet season. At a certain 

point in the year, the sowing starts and the rice plants remain in the system until a collabo-

rative harvest starts. Lansing showed with a cellular automata model that this method of pest 

control delivered the best results amongst a variety of randomly picked cropping schemes.  

The cellular automata approach is the predecessor of agent-based modelling, resulting in a 

set of isolated grid cells. The grid cells do not communicate with each other, leaving the 

communication uni-directional in contrast to the bi-directional communication of agent-

based modelling. Feedback between farmer and water temple could not be modelled. Hence, 

the new Balinese model was extended from the cellular automata model to a fully dynamic 

agent-based model. 

6.1.3 Balinese Agent-based irrigation model  

The Balinese Agent-based irrigation model (BAim) consist of a supervising agent that con-

trols the boundary conditions like the maximum amount of water that can be stored in the 

temple, initializes all agents and controls the model time. It supervises the two different 

classes of agents included in the model: the farmer and the temple agent. The model itself is 

divided into two different layers that are separated but influence each other. The volumetric 

layer L1 where the water supply is added to the temples storage, the delivered water and the 

demand are calculated. The second layer is the communication layer L2 where the signal of 

harvest is shared among the farmers and the mean disease level in the system is communi-

cated. 



Adaptive agent-based modelling 

120 

 

 

Fig. 41: Conceptual scheme of Balinese ABM with two different layers, the communication 

layer L2 and the volumetric stream layer L1. 

In this example, four farmers belong to one temple, and build the collective decision making 

and cropping system. Conceptually, the temple is a decisional entity in this model. In this 

synthetic use-case only one temple is modelled, further temples require an additional com-

munication layer between the temples to rotate and shift the cultivation pattern in terms of 

cropping strategies. 

 Class description Temple 

As mentioned before, the temple sets the boundary conditions for the upcoming season. The 

temple sets the share of farmers who grow high-yielding rice plants, determines the Thrs(D) 

and supervises the level of D. The share of high-yield rice growing farmers (HYShare) and 

Thrs(D) are set with different strategies. In the non-learning ABM, this threshold is either 

set a-priori or changed randomly without taking the current environmental situation into ac-

count. After setting these parameters the temple becomes a passive component of the ABM 

and supervises the global level of D.  

Once Thrs(D) is globally reached, the collective harvest starts following an active signal 

emitted from the temple. The signal to harvest is sent from the temple to all farmers as soon 

as the threshold for maximum plant disease is reached. All farmers obey and harvest the rice 

immediately regardless of phenological status of the rice plant.  
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A further value stored by the temple is the mean water storage per three month. The mean 

water storage is therefore calculated for the months January – March, April - June, July – 

September, October – December. A lower mean water storage in the temple signifies for a 

dryer year and thus for a lower expectable yield.  

 Class description Farmer 

The farming agent awaits its signals to sow and to harvest from the temple. On the commu-

nication layer, the farmers queue their water demand. After they get the signal to harvest, 

the rice is harvested and added to the global yield. The current disease status of the farm is 

shared with the temple where the maximum disease of all farmers is taken as the global D. 

The farm has no opportunity to save water, everything has to be consumed directly. After 

the harvest, the farming agent resets its disease level to 0.0 until growing season starts again. 

6.2 Adaptive Balinese Agent-based irrigation model  

The disease threshold and the share of high-yield farmers remained a parameter for the non-

learning ABM that had to be defined a-priori. Setting these parameters requires intensive 

manual analysis of the situation, a calibration function or a working ML scheme to judge the 

condition the agents are in. The non-learning trial and error approach considers the result 

from antecedent year as the result to beat in the actual year. By increasing or lowering the 

number of high-performance farmers and the threshold of acceptable disease the system tries 

to adapt to a changing environment without any kind of learning. If the temple recognizes 

the current period as a low flow cycle where a higher threshold may increase the yield, the 

temple decides to increase the threshold until the target class is reached.  

ML has the advantage to ingest new information during the runtime of the model: once a set 

of training data is established, the algorithm can be further ameliorated by any new infor-

mation coming into the system. In this case study, a k-means algorithm created a classifica-

tion of environmental situations with four resulting clusters. In contrast to the aforemen-

tioned approaches likes SVM, ANN and ELM, ML required less input data for training and 

was thus not limited to a certain size of training data. Therefore, a ML approach has to be 

applied that delivers stable results with limited training data and less parameters to maintain 

some degrees of freedom while the model is so structured to be interpreted by the researcher. 

In contrast to the case studies presented in Sec. 2 & 3, the here presented problem is not a 

regression problem but a classification problem which is another argument for the chosen k-

mean algorithm. 

The k-means algorithm falls into the category of unsupervised learning where for each sam-

ple the closest cluster is assigned. The k-means algorithm requires a number of cluster seeds. 

As one could imagine four possible ways for the temple to actively adapt to the environmen-

tal conditions to maximize the communal yield, four clusters were searched (Tab. 11). These 

four reactions comprised the increase or decrease of Thrs(D) and the variation of HYshare. 
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So, the reactions were simplified to two main groups of actions: alter Thrs(D) and adapt 

HYShare.  

Tab. 11: Possible reactions of temple to a changing environment 

Rule Adapt 1 Rule Adapt 2 Rule Adapt 3 Rule Adapt 4 

Increase Thrs(D) Decrease Thrs(D) Increase HYShare Decrease HYShare 

To reduce the number of dimensions of the k-means, the available parameters were reduced 

to 3, originating from the number of clusters minus the target variable. For the k-means the 

three parameters that shared the most information regarding the target variable by the MI 

were taken (Tab. 12). Therefore, MI between the target, the global rice yield and all available 

parameters derived from the model was calculated. By the MI values, one is able to identify 

the three most informative parameters. The calculation of mutual information follows the 

same notation as in Sec. 3.2 with Eq. (3.4) in a higher dimensional case.  

Thrs(D) showed the highest MI with the global yield with an average of 1 bit of information. 

HYShare still accounted for 0.6 bit while the third parameter, WS0, had a mean of 0.11 bit 

of shared information with the global yield. 

Tab. 12: Highest mutual information between possible parameters and global yield 

Parameter Threshold D Share of HY farmers Mean Water Storage 0 

MI [bit] 1 0.6 0.11 

Hence, the parameters Thrs(D), HYShare, the mean water storage in the temple before sow-

ing (WS0) are clustered to find groups that control the expectable yield. The cluster centers 

are found by the smallest quadratic euclidian distance from an element x (that represents the 

current situation of WS0, HYShare and Thrs(D)) to the chosen center µ: 
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As training data, 1,000 synthetic runs were calculated with the simple alteration from the 

non-learning ABM scheme to create input data for the k-means. The resulting cluster centers 

were exported to the GAMA environment. In case that one of three variables of the k-means 

was not utilized, for example the share of HY farmers due to a fixed number of HY farmers, 

the dimension was left out reducing the complexity of the domain for the algorithm. 

6.3 Results 

Analyzing the synthetic runs, three parameters were used to find cluster centers to adapt the 

temples strategy to maximize the global rice yield: the dimensionless Thrs(D), HYShare and 

WS0 (Fig. 42). These three parameters were found to have the highest mutual information 

on the global yield (Tab. 12) and resulted in the following cluster centers (Tab. 13). The four 
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clusters showed a broad range of expectable yields from different behaviors and environ-

mental situations. Class 1 (red dots in Fig. 42) represented a low flow situation with low 

disease threshold, whereas class 2 (green dots) was located in a low flow situation with a 

high threshold delivering a higher expectable global yield. Class 3 (blue dots) was similar to 

class 1 in wetter conditions with a mean water supply of 0.22 (Tab. 13). Class 4 (gold dots) 

was the cluster with the highest global yield and required a mean water supply of 0.26, a 

high percentage of HY farmers and a higher threshold for diseases. For visualization pur-

poses, the predictor high yield farmers was left out of Fig. 42, as the initial run of the model 

did not consider this number of HY farmers. 

 

Fig. 42: Cluster Analysis with global yield [% of possible yield], threshold of disease [-] and 

the mean water supply [water units] in the sowing season. One can see the separation into 

four different clusters. Two of those clusters show higher expectable global yields: Class 2 

(green) and class 4 (gold). Class 1 (red) represents a low flow situation with a low disease 

threshold and thus a risk-averse strategy. Class 3 (blue) is an intermediate class with rela-

tively high water supply and an expected medium rice harvest. 
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Tab. 13: Cluster centers with the target variable, global yield, the predictors mean disease 

threshold, the share of high-yield farmers and the current water supply situation 

Predictor Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Mean Thrs (D) 0.76 0.91 0.77 0.93 

Mean Water Supply 0.10 0.42 0.22 0.26 

Mean Global Yield 0.27 0.49 0.43 0.55 

Share of High-Yield 

Farmers 

0.25 0.75 0.5 0.75 

 

To highlight out the adaption capacity of the newly developed adaptive ABM (aABM), the 

model with learning adaption strategy was compared to the model without learning adaption. 

Considering only the parameter with the highest mutual information in the adaption process, 

the disease threshold, the expectable global yield has risen from 0.34 t to 0.41 t over a period 

of 100 years. This means that the global yield increased by 32% using the single parameter 

ML driven adaption strategy. Meanwhile, the computational time increased from 43sec to 

1min 12sec. With an expected optimal outcome (with roughly 50% loss due to diseases) of 

1.7 t, only 20% - 25% of the expected yield could be generated. Here, the number of HY 

farmers was restricted to one of four. This means that the share of HY farmers is not consid-

ered in the k-means and remained fixed. The aABM delivered stable and slightly better re-

sults, because the variance stayed at the same low level for both strategies at about 0.014 t. 

Taking all three parameters and the complete cluster analysis into account, the ML adaption 

strategy exceeded the non-learning strategy by far. The achievable maximum (due to the 

higher number of high-yield farmers, expecting a 50% availability of water) was increased 

to 2.3 t. Overall, the multi-adaption strategy reached 53% or a mean 1.217 t of rice per year. 

In 73% of the 1,000 synthetic cases the number of HY farmers changed in the analysis phase, 

the threshold of disease was altered in 67% of all cases. This means, the environmental con-

ditions forced an adaption of behavior over time. 

To show the influence of the timing, the decisional meeting was shifted from the end of the 

year to three months before sowing. Here, the mean global yield reached only 1.001 t which 

means that 43.5% of the possible yield was gathered. The computational time for the multi-

ple adaption time increased to 1min 45sec. Here, the global yield was lower than for the 

decisional meeting after 12 months and computational time was slightly higher.  

Evolving the cellular automata approach of the original Lansing model moved the model 

towards an ABM irrigation model. Here, social interactions of actors and processes that oc-

cur in knowledge-based processes like the adaption of traditional irrigation techniques and 

strategies to changing environmental conditions were connected. The results from this case 
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study revealed that the agent-based model profits from the learning layer. The original cel-

lular automata model would not be able to alter behavioral patterns at the runtime from 

knowledge gained at model time because the communication between the model components 

are not existent. 

6.4 Concluding remarks on adaptive agent-based models  

Agent-based modelling with a data driven adaption strategy has shown its ability to model 

complex coupled systems. ML has proven its potential for learning strategies in adaptive 

agent-based models that often required massive abstraction or pre-analysis of appropriate 

behavioral rules and thresholds that trigger certain reaction patterns. By incorporating a ML 

enhanced adaption strategy, an optimization of agent behavior could be achieved. Further-

more, this adaption strategy was describable without additional rules or thresholds. Hence, 

ML adds intelligence to a prior limited system.  

The lack of learning strategies was identified as a massive downside of agent-based models 

that requires the application of ML to reduce the manual workload (Abar et al., 2017; Kavak 

et al., 2018; Lamperti et al., 2018). Especially in the case of the Lansing Bali model ML 

helped to deduct the adaption strategy and could be used to increase the understanding of 

the farmers and priests, their aims and goals, as well as their developed adaption strategies 

(Janssen, 2007; Lansing et al., 2017). For future agent-based models covering socio-hydro-

logical systems, this implementation of learning might bring improvements as soon as as-

pects like knowledge and history of agents has influence on the model structure and outcome, 

like for vulnerability in the context of flood (Du et al., 2017), decision making processes 

(Gunkel, 2005; Mashhadi Ali et al., 2017) and generally water resource management in a 

changing environment (O’Connell, 2017). Instead of an adaption of thresholds, GP should 

be applied to adapt the formulation of rules in the learning phase.  

Again, scheduling impact has proven to be hard to determine as it has major influence on 

the outcome of the agent-based model. Like in the agent-based framework for the modelling 

of soilwater flow IPA (Mewes and Schumann, 2018b), the Balinese Agent-based Irrigation 

(BAIm) model scores different values in terms of optimal outcome with different scheduling 

methods. This reveals scheduling as a sensitive parameter that differs in its sensitivity from 

stiff equation based models. In future research focus has to be put on the scheduling of agents 

in these models to further understand the process of determination of the most appropriate 

scheduling method for the specific question.  

Additionally, this learning strategy allows to model ignorance of agents. If an ignorant agent 

ignores the advice from the temple and acts differently a new set of training data is created 

that can again be used to fit a ML algorithm. This leads to competing strategies and could 

end in a competition of learning strategies without explicitly describing the differences in 

strategies. Hence, a ML adaption strategy can be the first step towards a fully adaptive agent-

based model with behavioral rule set development by reinforcement learning.
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7 Summary 

In the beginning of the thesis the hypothesis was raised that with more data, novel analysis 

and modelling approaches are needed in hydrology and water resource management to cope 

with the rising availability of data and the demand for new insights from existing data. Es-

pecially with the dawn of the big data era, methods that create new information from avail-

able data are highly interesting for the hydrologic community. In the past decade, data and 

information proved to be the fuel of future scientific evolution in data-rich environments. 

The complementary approach stated by Shen (2018) requires the combination of big data 

archives, powerful ML approaches and the application of interrogative approaches that com-

bine the virtues of the novel information theory based improvements to gain new insights 

from existing data. 

The case study revealed that hydrologic pattern recognition by ML works fine for flood event 

separation. The application of ML approaches lowered the demand for developing dedicated 

algorithms to perform this task. Pre-processing the data, like cutting a continuous time series 

into chunks allows the application of algorithms like SVM for time series problems. The 

Multi-Layer-Perceptron did not deliver any suitable solutions for this problem. A detailed 

analysis of the applied structure of the neural network revealed, that the setup is not the 

reason for the comparatively weak results. Interestingly, a similar yet different approach, the 

ELM did deliver good results in the flood event separation. Together with the SVM, ELM 

seemed to be the most suitable approach for separating flood events from continuous time 

series of runoff. Regional disparities between the preferred catchment specific algorithms 

were explained by the No-Free-Lunch-Theorem: Once an algorithm has proven its capabil-

ity, it will solve similar problems with a degraded performance. There was no one optimal 

choice of tools, especially in data-driven approaches. The preference of algorithm could be 

a data-driven related method for regionalization of catchments or hydrologic systems. The 

reason for the regional similarities and dissimilarities remained unknown and is of interest 

for future research. As the algorithms do not have a dedicated understanding of hydrological 

processes and catchment structures, one might assume that the information content of the 

runoff data in the investigated chunks is the key to understand the patterns of regionalization.  

As most measures of information content are only available for discrete data, a measure for 

continuous data had to be found. Another limiting factor to describe the information content 

in the flood event separation problem was the missing true reference data. There was no 

measurable ground-true separation only referable proxy-methods. Hence, the success of the 

approach is always biased by the choice of the reference data. So, a different problem has to 

be found to develop the measure of information content in continuous data. This is the case 
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for tracer-based methods. 

Tracer-based methods are a common tool to understand catchments and their subterraneous 

states. A major advantage of this proxy data is that we have a conceptual understanding of 

single natural or artificial tracers and their interpretability in terms of catchment analysis. 

Moreover, more than one measurable size can be investigated. As a true reference data set 

was available, one can express the information content of an explaining variable, the runoff, 

towards a target variable, the tracer concentration. Hereby, the MI, the shared information 

content between two tracer concentrations, was applied to express the relation between two 

variables on an information-scale. With the objective to predict tracer concentrations from 

snippets of the runoff dynamics, it could be shown that the information content of runoff is 

limited in terms of a differentiable description of the hydrological system. The information 

content of runoff was lower than the shared information between tracer signature and runoff 

requires. Consequently, the prediction capability of the ML-approaches lacked in perfor-

mance. Nevertheless, a time series of tracer concentrations could be predicted. Again, the 

determination of the preferred algorithm was not obvious and remains problem-specific. In 

contrast to the flood event separation, the ANN provides results that are similar to the other 

approaches. Here, the complementary approach of modelling becomes obvious. While ni-

trate was more predictable with a specialized machine, in most cases sulfate scored better 

performances with a multivariate machine predicting both tracer concentrations at the same 

time. So, one can conclude that sulfate shares information with nitrate, which is a directed 

information between the target variables that becomes obvious through this study. 

All of the presented ML approaches are black boxes with some constraints. The structure of 

the system linking in- and output is found by the algorithm without any further expert 

knowledge of the researcher. This black box character is well suited if the predominant rules 

that drive the system are unknown or its relations are not clearly describable. So, a white-

box approach should be evaluated to reveal patterns in hydrological systems. ABMs are 

suitable white-box approaches to model patterns in complex system. As shown before, the 

case studies of ABMs comprise complex networks of agents in power grids, computer net-

works and many more. Traditionally used in social science and biology, ABMs can be used 

to describe natural systems as well. In physical hydrological models the rules of interaction 

are well documented. Nevertheless, the modelling techniques require simplification of these 

rules to build a model. Showing the movement of soil water through the matrix with an ABM 

revealed an interaction of the water entities that are described as balls with a certain mass 

and spatial extent with their specific environment. This simplification was caused by the 

massive computational demand of this approach, because any agent acts autonomously. 

Comparing the IPA model with a soil water model in the storage-based cmf model frame-

work, one can see that the ABM is able to capture similar dynamics as the traditional model. 

Some of the subterraneous processes are hard to replicate in storage based lumped models 

without an allocation of a unique ID towards an entity of water. Technically, this modelling 

technique could further evolve by outsourcing certain parts of the calculation from the main 
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processor to the GPU. Now, computational time is the main limit next to the conceptual 

problems of scheduling (as presented by different types of scheduling the agents) and the 

fixed rule sets that control the agents’ behavior. 

Apart from modelling AB is also an appropriate method to improve classification strategies. 

ABC includes soft parameters, history and expert knowledge in the classification process. In 

the presented case study, the delineation of irrigated agriculture from remote sensing data 

was shown. The image object agents were formed by an ontology that was set up to describe 

the world of the agents by certain attributes. The image object agents also acted under a rule 

set to achieve a certain goal: To maximize their belonging to a certain class. This belonging 

is expressed by the fuzzy membership µ which remains a free parameter in the classification 

strategy. Thresholds and the defined set of actions of the agents limit the variability of the 

approach. Similar to ABM, ABC demand a lot of computational time. The inner structure of 

specialized action maps for each action and a collective iteration deciding which action de-

livers the best results allows to run ABC on high-performance parallel computers or dedi-

cated GPUs. In terms of interpretability, ABC outscores the traditional pixel-wise classifi-

cation strategies. Although the rule set of classification in the case study did not allow major 

improvements in accuracy of the approach, the completeness of the derived classes was 

higher than in any other approach. 
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8 Conclusions 

Current hydrological modelling and data mining strategies often fail when applied to big 

data archives or to data sets where the structure of the data is unknown. Here, ML and AB 

methods show their advantages. As shown in this thesis, ML is able to reproduce patterns on 

hydrological data without the exact mathematical formulation of the laws leading to the ref-

erence data. The data-driven character of the ML application (Fig. 2) allows searching for 

patterns in the data. In contrast to the understanding that more data contains more infor-

mation and is consequently fruitful for the modelling expert, the case studies revealed that 

the information content of the data is of higher importance than the total amount of available 

data. Hence, the investigation of the information content of the data has to be conducted to 

avoid over- or underfitting of data-driven approaches. Shannon’s entropy model could be a 

key tool to understand the information content of the data and to judge the results from ML-

based approaches as the tracer prediction case study has shown. The concept of entropy and 

MI is helpful to reveal information-rich data-sets and improves pure data-driven applica-

tions.  

In contrast to ML techniques, AB approaches represent the knowledge-driven pole of the 

modelling spectrum, where the rules are expressed in a fixed manner (Fig. 2). Apart from 

the ML applications, the AB case studies have clearly shown the merits of these techniques 

in hydrology and water resource management. The incorporation of fuzzy information in 

spatio-temporal context of objects (like in the ABC example of Nebraska) increases the 

range of information to be derived from remote sensing data. Informal knowledge and fuzzy 

relations between objects in hydrological contexts can be modelled and information re-

vealed. Without the ABC application, the historical development of irrigated agriculture 

wouldn’t be detectable from spectral remote sensing data without additional information. 

The completeness of the ABC derived classification results exceeds the traditional ap-

proaches. Likewise, in ABM, the proposed modelling technique allows the modelling of 

spatially distributed complex hydrological situations. Here, the autonomous software units 

form patterns that are comparable to those measured in field or under laboratory conditions 

in a soil column, e.g. the accumulation of water at transition layers. Hence, AB methods 

allow to investigate natural and socio-hydrological systems in all its facets. 

Nevertheless, the advantages of AB and ML are isolated without the combined approach of 

aABM presented in this thesis. The aABM is the keystone that links both modelling worlds 

(Fig. 3). The here presented aABM approach overcomes the traditional limits of both mod-

elling paradigms and allows the adaption of the core fundaments of the ABM to the data. 

Data- and knowledge-driven modelling merge, to profit from both techniques and to gain 



Conclusions 

130 

 

insight from the existing data. Furthermore, socio-hydrological models can describe the gen-

esis of apparently naturally developed strategies. Again, the information content and the MI 

of the input data and the desired target are crucial for aABMs that converge within an ac-

ceptable time and deliver interpretable results. 

In summary, applications in hydrology and water resource management profit from both: 

ML and AB. The combination of both approaches leads to a promising modelling technique 

that could result in un unique insights in existing data, a path to access big data archives and 

to get the most from the increasing amount of existing data from environmental sensors. 
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9 Outlook 

Like ABM the fixed rules hinder the general application of ABC. This is the justification for 

the final part of the thesis. aABM combines both approaches and is a simple form of deep 

learning. By ML the ABM of the Balinese irrigation model BaIM can adapt their thresholds 

that trigger the harvest to recent environmental conditions. Although the ML component of 

the model is rather simple (represented by a KNN-algorithm fed by 1,000 synthetic runs), 

the additional layer helps to double the expected yield. Moreover, the complexity of the 

model itself is increased without losing further degrees of freedom. The higher the decisional 

power of the ML component was, the better the learning agents scored in terms of rice yield. 

By this combination of approaches, the advantages of both black-box data-driven adaption 

and white-box interpretability of internal states and structures are joint in the aABM. Alt-

hough limitations from ABM and ABC are inherited, this highly dynamic and adaptive ap-

proach allows an ABM to calibrate without extensive Monte-Carlo runs or solution space 

investigations. Using the MI between the target variable and the multitude of possible ex-

plaining variables, the set with the highest shared amount of information can be determined. 

This helps to regularize the ML approach and to avoid overfitting. In addition to a reduced 

amount of calibration, aABMs allow to model scenarios in which the agents face unknown 

situations and alter their behavior. So, to model systems at the interface between social and 

natural systems, aABMs are an appropriate technique for scenario building and evaluation. 

Furthermore, aABMs allow the comparison of modelling strategies and to analyze how the 

autonomous agents agree on the optimal strategy. Now, strategy finding requires a high num-

ber of changes, because the agents can just adapt thresholds and are not able to alter rules at 

their core.  

Changing rules and equations based on data-driven decisions is the first step towards deep 

learning and reinforcement learning. A deep learning rule adaption in agent-based compu-

ting lowers the problems of applying ABMs to real-world data because the work-intensive 

definition of rule sets and the calibration of threshold parameters diminishes. In deep learn-

ing the internal structure of the ML approach remains intact while the outmost layer is 

adapted to each new situation. Consequently, a found deep learning structure could be used 

not only for regionalization but also for a transfer of knowledge over regions and scientific 

problems. For the deep learning structure also techniques like genetic programming (GP) 

could be used to create interpretable internal structures based on the training data. In deep 

learning the information content is crucial, because of the transferable core of the ML. Again, 

complementary modelling could be a method to improve modelling capabilities by using 



Outlook 

132 

 

specialized approaches within the ML approach. The combination of data-driven ML ap-

proaches with agent-based techniques could improve the acceptance in the scientific com-

munity as well as the transferability of scientific research into application. 

Reinforcement learning describes a deep learning variety that allows the algorithm to adapt 

its internal structure to new training data using a reward-punishment-approach. The algo-

rithm follows a trial and error method to improve its structure. Improvements are rewarded 

whereas the declination of performance is punished. Consequently, patterns leading to a re-

ward are more often repeated than those leading to a punishment. Here, the core of the ML 

approach remains intact and only the last layer is adapted to the problem. This could increase 

the performance and the adaptability of algorithms faced with unknown situation where 

thresholds might not hold and novel solutions that are non-existent in the training data should 

be tested and evaluated. Successful applications of these reinforcement learning approaches 

cover strategy detection in videogames, autonomous cars and medicine. A combination with 

ABM should substantially improve AB modelling techniques and lower the risk of over spe-

cialization like in the thresholds in ABC. 

The second major improvement in aABM and ML would be the extensive application of GP. 

GP is the umbrella term for algorithms that try to find mathematical solutions to a given 

problem on the basis of symbolic programming. Symbolic programming on the other hand 

is a kind of computational linguistics deciphering the given problem into a tree of symbolic 

interactions. This tree can recursively be solved and used as guidebook for the specific case. 

GP is highly specialized on the given problem but in combination with ABM the derived GP 

trees might give insight into an unknown system. Traditionally, GP algorithms are applied 

either for problems with unknown relations between the components or if an approximation 

is well enough. 

With aABM strategies in changing environments can be modelled and strategies of strategy-

finding can be compared. For this approach each agent follows the goal to interpret the ad-

ministrative rules for personal advantage. Additionally, the aABM allows to compare strat-

egies at run-time. So, if a strategy is found to work for an individual although it disobeys the 

administrative rules, the individual can switch to that strategy. The aABM is an evolution of 

two very different modelling approaches combining the advantages of both methods. The 

aABM allows to model complex hydrological systems from physical questions to socio-

hydrological questions and overcomes the limits of AB and ML.
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Appendix A: Tables 

Tab. 14: Catchment characteristics comprising the geographical unit of the catchment (after 

Landesamt für Umwelt Bayern, 2017), the basin area, av. flow and the number of events 

covered in the database. 

No. Name River Geogr.Unit 

Basin 

area 
Av. Flow 

No. 

Events 

 [km2] [m3/s] [-] 

1 Birgsau Stillach Northern Calc. Alps 35.6 2.1 50 

2 
Immenstadt-Zoll-

bruecke 
Iller 

Northern Calc. Alps 
724 30.5 60 

3 Friedersdorf Buchbach 
Donau-Iller-Lech 

plain 
11.1 0.2 47 

4 Gampelmuehle Ölschnitz 
Oberpfalz-Obermain 

hills 
62.2 0.5 44 

5 Lohr Baunach Keuper-Lias-plain 165.3 1 43 

6 Untersteinach Lower Steinach 
Donau-Iller-Lech 

plain 
137.4 2 45 

7 Kothmaissling Chamb 
Donau-Isar gravel 

plains 
405 4.3 56 

8 Lohmannmuehle Small Regen 
Donau-Isar gravel 

plains 
115.9 2.8 65 

9 Marienthal Regen 
Donau-Isar gravel 

plains 
2590.4 37.7 62 

10 Zwiesel Black Regen 
Donau-Isar gravel 

plains 
293.4 8.1 59 

 
Tab. 15: Soil physical parameters for Green Ampt and van Genuchten model. 

Parameter Description Su2 mS 

Qr [Vol. %] Residual water content 0 0 

Qs [Vol. %] Saturated water content 0.3786 0.3886 

α [-] VG-Parameter 0.20387 0.216188 

η [-] VG/GA Parameter 1.2347 1.3533 

l [-] VG Parameter -3.339 -0.579 

k0 [mm/d] Initial hydraulic con-

ductivity 

285.5 507.5 

ks [mm/d] Saturated hydraulic 

conductivity 

185.0 375.0 
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Tab. 16: Statistical parameters from model comparison between cmf and IPA for homoge-

nous soil 

Model Std [%] Mean [%] r² 

cmf 0.045 0.29 

0.80 
IPA 0.039 0.29 

 
Tab. 17: Statistical parameters from model comparison between cmf and IPA for inhomoge-

neous soil 

Model Std [%] Mean [%] r² 

cmf 0.033 0.27 
0.71 

IPA 0.036 0.28 

 
Tab. 18: Correlation coeffecient between scheduling methods for Layer 1 

 Random Calling Energy Gradient Age 

Random Calling 1 0.73 0.53 

Energy Gradient 0.73 1 0.66 

Age 0.53 0.66 1 

Tab. 19: Correlation coefficient between scheduling methods for Layer 2 

 Random Calling Energy Gradient Age 

Random Calling 1 0.9 0.63 

Energy Gradient 0.9 1 0.86 

Age 0.63 0.86 1 
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